50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Band alignment of two-dimensional transition metal dichalcogenides: application in tunnel field effect transistors

      Preprint

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tunnel field effect transistors (TFETs) based on vertical stacking of two dimensional materials are of interest for low-power logic devices. The monolayer transition metal dichalcogenides (TMDs) with sizable band gaps show promise in building p-n junctions (couples) for TFET applications. Band alignment information is essential for realizing broken gap junctions with excellent electron tunneling efficiencies. Promising couples composed of monolayer TMDs are suggested to be VIB-MeX2 (Me= W, Mo; X= Te, Se) as the n-type source and IVB-MeX2 (Me = Zr, Hf; X= S, Se) as the p-type drain by density functional theory calculations.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Atomically thin MoS2: A new direct-gap semiconductor

          The electronic properties of ultrathin crystals of molybdenum disulfide consisting of N = 1, 2, ... 6 S-Mo-S monolayers have been investigated by optical spectroscopy. Through characterization by absorption, photoluminescence, and photoconductivity spectroscopy, we trace the effect of quantum confinement on the material's electronic structure. With decreasing thickness, the indirect band gap, which lies below the direct gap in the bulk material, shifts upwards in energy by more than 0.6 eV. This leads to a crossover to a direct-gap material in the limit of the single monolayer. Unlike the bulk material, the MoS2 monolayer emits light strongly. The freestanding monolayer exhibits an increase in luminescence quantum efficiency by more than a factor of 1000 compared with the bulk material.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Field-effect tunneling transistor based on vertical graphene heterostructures

              We report a bipolar field effect tunneling transistor that exploits to advantage the low density of states in graphene and its one atomic layer thickness. Our proof-of-concept devices are graphene heterostructures with atomically thin boron nitride acting as a tunnel barrier. They exhibit room temperature switching ratios ~50, a value that can be enhanced further by optimizing the device structure. These devices have potential for high frequency operation and large scale integration.
                Bookmark

                Author and article information

                Journal
                10.1063/1.4817409
                1308.0767

                Condensed matter
                Condensed matter

                Comments

                Comment on this article