25
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Regulation of Host Immune Responses against Influenza A Virus Infection by Mitogen-Activated Protein Kinases (MAPKs)

      review-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Influenza is a major respiratory viral disease caused by infections from the influenza A virus (IAV) that persists across various seasonal outbreaks globally each year. Host immune response is a key factor determining disease severity of influenza infection, presenting an attractive target for the development of novel therapies for treatments. Among the multiple signal transduction pathways regulating the host immune activation and function in response to IAV infections, the mitogen-activated protein kinase (MAPK) pathways are important signalling axes, downstream of various pattern recognition receptors (PRRs), activated by IAVs that regulate various cellular processes in immune cells of both innate and adaptive immunity. Moreover, aberrant MAPK activation underpins overexuberant production of inflammatory mediators, promoting the development of the “cytokine storm”, a characteristic of severe respiratory viral diseases. Therefore, elucidation of the regulatory roles of MAPK in immune responses against IAVs is not only essential for understanding the pathogenesis of severe influenza, but also critical for developing MAPK-dependent therapies for treatment of respiratory viral diseases. In this review, we will summarise the current understanding of MAPK functions in both innate and adaptive immune response against IAVs and discuss their contributions towards the cytokine storm caused by highly pathogenic influenza viruses.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: found
          • Article: not found

          The trinity of COVID-19: immunity, inflammation and intervention

          Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic. Alongside investigations into the virology of SARS-CoV-2, understanding the fundamental physiological and immunological processes underlying the clinical manifestations of COVID-19 is vital for the identification and rational design of effective therapies. Here, we provide an overview of the pathophysiology of SARS-CoV-2 infection. We describe the interaction of SARS-CoV-2 with the immune system and the subsequent contribution of dysfunctional immune responses to disease progression. From nascent reports describing SARS-CoV-2, we make inferences on the basis of the parallel pathophysiological and immunological features of the other human coronaviruses targeting the lower respiratory tract — severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). Finally, we highlight the implications of these approaches for potential therapeutic interventions that target viral infection and/or immunoregulation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            COVID-19, SARS and MERS: are they closely related?

            Background The 2019 novel coronavirus (SARS-CoV-2) is a new human coronavirus which is spreading with epidemic features in China and other Asian countries; cases have also been reported worldwide. This novel coronavirus disease (COVID-19) is associated with a respiratory illness that may lead to severe pneumonia and acute respiratory distress syndrome (ARDS). Although related to the severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome (MERS), COVID-19 shows some peculiar pathogenetic, epidemiological and clinical features which to date are not completely understood. Aims To provide a review of the differences in pathogenesis, epidemiology and clinical features of COVID-19, SARS and MERS. Sources The most recent literature in the English language regarding COVID-19 has been reviewed, and extracted data have been compared with the current scientific evidence about SARS and MERS epidemics. Content COVID-19 seems not to be very different from SARS regarding its clinical features. However, it has a fatality rate of 2.3%, lower than that of SARS (9.5%) and much lower than that of MERS (34.4%). The possibility cannot be excluded that because of the less severe clinical picture of COVID-19 it can spread in the community more easily than MERS and SARS. The actual basic reproductive number (R0) of COVID-19 (2.0–2.5) is still controversial. It is probably slightly higher than the R0 of SARS (1.7–1.9) and higher than that of MERS (<1). A gastrointestinal route of transmission for SARS-CoV-2, which has been assumed for SARS-CoV and MERS-CoV, cannot be ruled out and needs further investigation. Implications There is still much more to know about COVID-19, especially as concerns mortality and its capacity to spread on a pandemic level. Nonetheless, all of the lessons we learned in the past from the SARS and MERS epidemics are the best cultural weapons with which to face this new global threat.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Innate immunity to influenza virus infection.

              Influenza viruses are a major pathogen of both humans and animals. Recent studies using gene-knockout mice have led to an in-depth understanding of the innate sensors that detect influenza virus infection in a variety of cell types. Signalling downstream of these sensors induces distinct sets of effector mechanisms that block virus replication and promote viral clearance by inducing innate and adaptive immune responses. In this Review, we discuss the various ways in which the innate immune system uses pattern recognition receptors to detect and respond to influenza virus infection. We consider whether the outcome of innate sensor stimulation promotes antiviral resistance or disease tolerance, and propose rational treatment strategies for the acute respiratory disease that is caused by influenza virus infection.
                Bookmark

                Author and article information

                Journal
                Microorganisms
                Microorganisms
                microorganisms
                Microorganisms
                MDPI
                2076-2607
                17 July 2020
                July 2020
                : 8
                : 7
                : 1067
                Affiliations
                [1 ]Integrative Biomedical Sciences Programme, University of Edinburgh Institute, Zhejiang University, International Campus Zhejiang University, Haining 314400, China; jiabo.17@ 123456intl.zju.edu.cn (J.Y.); 3170111563@ 123456zju.edu.cn (X.S.)
                [2 ]Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; e0004148@ 123456u.nus.edu
                [3 ]The Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
                Author notes
                [* ]Correspondence: miczy@ 123456nus.edu.sg ; Tel.: +65-65166407
                Article
                microorganisms-08-01067
                10.3390/microorganisms8071067
                7409222
                32709018
                75eb1587-bf37-4382-a3e6-5c9c1c790a52
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 18 June 2020
                : 15 July 2020
                Categories
                Review

                influenza,mapk,respiratory viral diseases,pattern recognition receptors,inflammatory cytokines,innate immunity,adaptive immunity,cytokine storm

                Comments

                Comment on this article