100
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Platelet secretion: From haemostasis to wound healing and beyond

      Blood Reviews
      Elsevier BV

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: found
          • Article: not found

          Membrane fusion: grappling with SNARE and SM proteins.

          The two universally required components of the intracellular membrane fusion machinery, SNARE and SM (Sec1/Munc18-like) proteins, play complementary roles in fusion. Vesicular and target membrane-localized SNARE proteins zipper up into an alpha-helical bundle that pulls the two membranes tightly together to exert the force required for fusion. SM proteins, shaped like clasps, bind to trans-SNARE complexes to direct their fusogenic action. Individual fusion reactions are executed by distinct combinations of SNARE and SM proteins to ensure specificity, and are controlled by regulators that embed the SM-SNARE fusion machinery into a physiological context. This regulation is spectacularly apparent in the exquisite speed and precision of synaptic exocytosis, where synaptotagmin (the calcium-ion sensor for fusion) cooperates with complexin (the clamp activator) to control the precisely timed release of neurotransmitters that initiates synaptic transmission and underlies brain function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The platelet contribution to cancer progression.

            Traditionally viewed as major cellular components in hemostasis and thrombosis, the contribution of platelets to the progression of cancer is an emerging area of research interest. Complex interactions between tumor cells and circulating platelets play an important role in cancer growth and dissemination, and a growing body of evidence supports a role for physiologic platelet receptors and platelet agonists in cancer metastases and angiogenesis. Platelets provide a procoagulant surface facilitating amplification of cancer-related coagulation, and can be recruited to shroud tumor cells, thereby shielding them from immune responses, and facilitate cancer growth and dissemination. Experimental blockade of key platelet receptors, such as GP1b/IX/V, GPIIbIIIa and GPVI, has been shown to attenuate metastases. Platelets are also recognized as dynamic reservoirs of proangiogenic and anti-angiogenic proteins that can be manipulated pharmacologically. A bidirectional relationship between platelets and tumors is also seen, with evidence of 'tumor conditioning' of platelets. The platelet as a reporter of malignancy and a targeted delivery system for anticancer therapy has also been proposed. The development of platelet inhibitors that influence malignancy progression and clinical testing of currently available antiplatelet drugs represents a promising area of targeted cancer therapy. © 2011 International Society on Thrombosis and Haemostasis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The incredible journey: From megakaryocyte development to platelet formation

              Circulating blood platelets are specialized cells that prevent bleeding and minimize blood vessel injury. Large progenitor cells in the bone marrow called megakaryocytes (MKs) are the source of platelets. MKs release platelets through a series of fascinating cell biological events. During maturation, they become polyploid and accumulate massive amounts of protein and membrane. Then, in a cytoskeletal-driven process, they extend long branching processes, designated proplatelets, into sinusoidal blood vessels where they undergo fission to release platelets. Given the need for platelets in many pathological situations, understanding how this process occurs is an active area of research with important clinical applications.
                Bookmark

                Author and article information

                Journal
                10.1016/j.blre.2014.10.003
                http://creativecommons.org/licenses/by/3.0/

                Comments

                Comment on this article