421
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Astaxanthin protects ARPE-19 cells from oxidative stress via upregulation of Nrf2-regulated phase II enzymes through activation of PI3K/Akt

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Oxidative stress on retinal pigment epithelial (RPE) cells is thought to play a crucial role in the development and progression of age-related macular degeneration. Astaxanthin (AST) is a carotenoid that shows significant antioxidant properties. This study was designed to investigate the protective effect of AST on ARPE-19 cells against oxidative stress and the possible underlying mechanism.

          Methods

          ARPE-19 cells exposed to different doses of H 2O 2 were incubated with various concentrations of AST and cell viability subsequently detected with the (4-[3-[4-iodophenyl]-2–4(4-nitrophenyl)-2H-5- tetrazolio-1,3-benzene disulfonate]; WST-1) assay. The apoptosis rate and intracellular levels of reactive oxygen species (ROS) were measured with flow cytometry. NAD(P)H quinine oxidoreductase 1 (NQO1), hemeoxygenase-1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and glutamate-cysteine ligase catalytic subunit (GCLC) expression were examined with real-time PCR and western blotting. The nuclear localization of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) protein and the expression levels of cleaved caspase-3 and protein kinase B proteins were evaluated with western blotting.

          Results

          AST clearly reduced H 2O 2-induced cell viability loss, cell apoptosis, and intracellular generation of ROS. Furthermore, treatment with AST activated the Nrf2-ARE pathway by inducing Nrf2 nuclear localization. Consequently, Phase II enzymes NQO1, HO-1, GCLM, and GCLC mRNA and proteins were increased. AST inhibited expression of H 2O 2-induced cleaved caspase-3 protein. Activation of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway was involved in the protective effect of AST on the ARPE-19 cells.

          Conclusions

          AST protected ARPE-19 cells against H 2O 2-induced oxidative stress via Nrf2-mediated upregulation of the expression of Phase II enzymes involving the PI3K/Akt pathway.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Astaxanthin: a review of its chemistry and applications.

          Astaxanthin is a carotenoid widely used in salmonid and crustacean aquaculture to provide the pink color characteristic of that species. This application has been well documented for over two decades and is currently the major market driver for the pigment. Additionally, astaxanthin also plays a key role as an intermediary in reproductive processes. Synthetic astaxanthin dominates the world market but recent interest in natural sources of the pigment has increased substantially. Common sources of natural astaxanthin are the green algae Haematococcus pluvialis, the red yeast, Phaffia rhodozyma, as well as crustacean byproducts. Astaxanthin possesses an unusual antioxidant activity which has caused a surge in the nutraceutical market for the encapsulated product. Also, health benefits such as cardiovascular disease prevention, immune system boosting, bioactivity against Helycobacter pylori, and cataract prevention, have been associated with astaxanthin consumption. Research on the health benefits of astaxanthin is very recent and has mostly been performed in vitro or at the pre-clinical level with humans. This paper reviews the current available evidence regarding astaxanthin chemistry and its potential beneficial effects in humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of oxidative stress in the pathogenesis of age-related macular degeneration.

            Age-related macular degeneration (AMD) is the leading cause of blind registration in the developed world, and yet its pathogenesis remains poorly understood. Oxidative stress, which refers to cellular damage caused by reactive oxygen intermediates (ROI), has been implicated in many disease processes, especially age-related disorders. ROIs include free radicals, hydrogen peroxide, and singlet oxygen, and they are often the byproducts of oxygen metabolism. The retina is particularly susceptible to oxidative stress because of its high consumption of oxygen, its high proportion of polyunsaturated fatty acids, and its exposure to visible light. In vitro studies have consistently shown that photochemical retinal injury is attributable to oxidative stress and that the antioxidant vitamins A, C, and E protect against this type of injury. Furthermore, there is strong evidence suggesting that lipofuscin is derived, at least in part, from oxidatively damaged photoreceptor outer segments and that it is itself a photoreactive substance. However, the relationships between dietary and serum levels of the antioxidant vitamins and age-related macular disease are less clear, although a protective effect of high plasma concentrations of alpha-tocopherol has been convincingly demonstrated. Macular pigment is also believed to limit retinal oxidative damage by absorbing incoming blue light and/or quenching ROIs. Many putative risk-factors for AMD have been linked to a lack of macular pigment, including female gender, lens density, tobacco use, light iris color, and reduced visual sensitivity. Moreover, the Eye Disease Case-Control Study found that high plasma levels of lutein and zeaxanthin were associated with reduced risk of neovascular AMD. The concept that AMD can be attributed to cumulative oxidative stress is enticing, but remains unproven. With a view to reducing oxidative damage, the effect of nutritional antioxidant supplements on the onset and natural course of age-related macular disease is currently being evaluated.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Important causes of visual impairment in the world today.

                Bookmark

                Author and article information

                Journal
                Mol Vis
                Mol. Vis
                MV
                Molecular Vision
                Molecular Vision
                1090-0535
                2013
                25 July 2013
                : 19
                : 1656-1666
                Affiliations
                [1 ]Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P.R. China
                [2 ]Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P.R. China
                Author notes
                Correspondence to: Xiaomei Zhang, Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang Province, P.R. China, 150001; Phone: +86 451 85553922; FAX: +86 451 53643849; email: zhangxm667@ 123456163.com
                Article
                169 2012MOLVIS0695
                3725964
                23901249
                0f672fde-8f2a-48dc-b037-27032f6185c4
                Copyright © 2013 Molecular Vision.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 01 November 2012
                : 22 July 2013
                Categories
                Research Article
                Custom metadata
                Export to XML

                Vision sciences
                Vision sciences

                Comments

                Comment on this article