6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neuropilins guide preganglionic sympathetic axons and chromaffin cell precursors to establish the adrenal medulla

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          The adrenal medulla is composed of neuroendocrine chromaffin cells that secrete adrenaline into the systemic circulation to maintain physiological homeostasis and enable the autonomic stress response. How chromaffin cell precursors colonise the adrenal medulla and how they become connected to central nervous system-derived preganglionic sympathetic neurons remain largely unknown. By combining lineage tracing, gene expression studies, genetic ablation and the analysis of mouse mutants, we demonstrate that preganglionic axons direct chromaffin cell precursors into the adrenal primordia. We further show that preganglionic axons and chromaffin cell precursors require class 3 semaphorin (SEMA3) signalling through neuropilins (NRP) to target the adrenal medulla. Thus, SEMA3 proteins serve as guidance cues to control formation of the adrenal neuroendocrine system by establishing appropriate connections between preganglionic neurons and adrenal chromaffin cells that regulate the autonomic stress response.

          Abstract

          Summary: A new role is revealed for semaphorin/neuropilin signalling in guiding preganglionic sympathetic axons and chromaffin cell precursors into the adrenal primordia, ensuring correct regulation of the autonomic stress response.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          The origin and development of glial cells in peripheral nerves.

          During the development of peripheral nerves, neural crest cells generate myelinating and non-myelinating glial cells in a process that parallels gliogenesis from the germinal layers of the CNS. Unlike central gliogenesis, neural crest development involves a protracted embryonic phase devoted to the generation of, first, the Schwann cell precursor and then the immature Schwann cell, a cell whose fate as a myelinating or non-myelinating cell has yet to be determined. Embryonic nerves therefore offer a particular opportunity to analyse the early steps of gliogenesis from transient multipotent stem cells, and to understand how this process is integrated with organogenesis of peripheral nerves.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neuropilin-1 Conveys Semaphorin and VEGF Signaling during Neural and Cardiovascular Development

            Neuropilin-1 (Npn-1) is a receptor that binds multiple ligands from structurally distinct families, including secreted semaphorins (Sema) and vascular endothelial growth factors (VEGF). We generated npn-1 knockin mice, which express an altered ligand binding site variant of Npn-1, and npn-1 conditional null mice to establish the cell-type- and ligand specificity of Npn-1 function in the developing cardiovascular and nervous systems. Our results show that VEGF-Npn-1 signaling in endothelial cells is required for angiogenesis. In striking contrast, Sema-Npn-1 signaling is not essential for general vascular development but is required for axonal pathfinding by several populations of neurons in the CNS and PNS. Remarkably, both Sema-Npn-1 signaling and VEGF-Npn-1 signaling are critical for heart development. Therefore, Npn-1 is a multifunctional receptor that mediates the activities of structurally distinct ligands during development of the heart, vasculature, and nervous system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal medulla

              Adrenalin is a fundamental circulating hormone for bodily responses to internal and external stressors. Chromaffin cells of the adrenal medulla (AM) represent the main neuroendocrine adrenergic component and are believed to differentiate from neural crest cells. Here, we demonstrate that large numbers of chromaffin cells arise from peripheral glial stem cells, termed Schwann cell precursors (SCPs). SCPs migrate along the visceral motor nerve to the vicinity of the forming adrenal gland where they detach from the nerve and form post-synaptic neuroendocrine chromaffin cells. An intricate molecular logic drives two sequential phases of gene expression, one unique for a distinct transient cellular state and another for cell-type specification. Subsequently, these programs downregulate SCP- and upregulate chromaffin-cell-gene networks. The adrenal medulla forms through limited cell expansion and requires the recruitment of numerous SCPs. Thus, peripheral nerves serve as a stem cell niche for neuroendocrine system development.
                Bookmark

                Author and article information

                Journal
                Development
                Development
                DEV
                develop
                Development (Cambridge, England)
                The Company of Biologists Ltd
                0950-1991
                1477-9129
                1 November 2018
                2 November 2018
                2 November 2018
                : 145
                : 21
                : dev162552
                Affiliations
                [1 ]Centre for Cancer Biology, SA Pathology and University of South Australia , North Terrace, Adelaide 5001, Australia
                [2 ]Medical School, University of Adelaide , Frome Road, Adelaide 5000, Australia
                [3 ]UCL Institute of Ophthalmology, University College London , 11-43 Bath Street, London EC1V 9EL, UK
                Author notes
                [* ]Author for correspondence ( quenten.schwarz@ 123456unisa.edu.au )
                Author information
                http://orcid.org/0000-0002-5958-4181
                Article
                DEV162552
                10.1242/dev.162552
                6240312
                30237243
                0e832f46-244a-4b0a-90b3-a0867b56bf64
                © 2018. Published by The Company of Biologists Ltd

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

                History
                : 20 December 2017
                : 13 September 2018
                Funding
                Funded by: National Health and Medical Research Council, http://dx.doi.org/10.13039/501100000925;
                Award ID: APP106958
                Funded by: Biotechnology and Biological Sciences Research Council, http://dx.doi.org/10.13039/501100000268;
                Award ID: BB/J00930X/1
                Categories
                205
                Research Article

                Developmental biology
                adrenal gland,autonomic nervous system,axon guidance,chromaffin cell,neural crest cell,neuropilin

                Comments

                Comment on this article