3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enhanced expression of miR-20a driven by nanog exacerbated the degradation of extracellular matrix in thoracic aortic dissection

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Thoracic aortic dissection (TAD) is a life-threatening vascular disease manifested as intramural bleeding in the medial layers of the thoracic aorta. The key histopathologic feature of TAD is medial degeneration, characterized by depletion of vascular smooth muscle cells (VSMCs) and degradation of extracellular matrix (ECM). MicroRNA, as essential epigenetic regulators, can inhibit the protein expression of target genes without modifying the sequences. This study aimed to elucidate the role and underlying mechanism of miR-20a, a member of the miR-17-92 cluster, in regulating ECM degradation during the pathogenesis of TAD. The expression of the miR-17-92 cluster was significantly increased in synthetic VSMCs derived from TAD lesions compared to contractile VSMCs isolated from normal thoracic aortas. Notably, the expression of miR-20a was increased in VSMCs in response to serum exposure and various stimuli. In TAD lesions, the expression of miR-20a was significantly negatively correlated with that of elastin. Elevated expression of miR-20a was also observed in thoracic aortas of TAD mice induced by β-aminopropionitrile fumarate and angiotensin II. Overexpression of miR-20a via mimic transfection enhanced the growth and invasive capabilities of VSMCs, with no significant impact on their migratory activity or the expression of phenotypic markers (α-SMA, SM22, and OPN). Silencing of miR-20a with inhibitor transfection mitigated the hyperactivation of MMP2 in VSMCs stimulated by PDGF-bb, as evidenced by reduced levels of active-MMP2 and increased levels of pro-MMP2. Subsequently, TIMP2 was identified as a novel target gene of miR-20a. The role of miR-20a in promoting the activation of MMP2 was mediated by the suppression of TIMP2 expression in VSMCs. In addition, the elevated expression of miR-20a was found to be directly driven by Nanog in VSMCs. Collectively, these findings indicate that miR-20a plays a crucial role in maintaining the homeostasis of the thoracic aortic wall during TAD pathogenesis and may represent a potential therapeutic target for TAD.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          miRDB: an online database for prediction of functional microRNA targets

          Abstract MicroRNAs (miRNAs) are small noncoding RNAs that act as master regulators in many biological processes. miRNAs function mainly by downregulating the expression of their gene targets. Thus, accurate prediction of miRNA targets is critical for characterization of miRNA functions. To this end, we have developed an online database, miRDB, for miRNA target prediction and functional annotations. Recently, we have performed major updates for miRDB. Specifically, by employing an improved algorithm for miRNA target prediction, we now present updated transcriptome-wide target prediction data in miRDB, including 3.5 million predicted targets regulated by 7000 miRNAs in five species. Further, we have implemented the new prediction algorithm into a web server, allowing custom target prediction with user-provided sequences. Another new database feature is the prediction of cell-specific miRNA targets. miRDB now hosts the expression profiles of over 1000 cell lines and presents target prediction data that are tailored for specific cell models. At last, a new web query interface has been added to miRDB for prediction of miRNA functions by integrative analysis of target prediction and Gene Ontology data. All data in miRDB are freely accessible at http://mirdb.org.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            FunRich: An open access standalone functional enrichment and interaction network analysis tool.

            As high-throughput techniques including proteomics become more accessible to individual laboratories, there is an urgent need for a user-friendly bioinformatics analysis system. Here, we describe FunRich, an open access, standalone functional enrichment and network analysis tool. FunRich is designed to be used by biologists with minimal or no support from computational and database experts. Using FunRich, users can perform functional enrichment analysis on background databases that are integrated from heterogeneous genomic and proteomic resources (>1.5 million annotations). Besides default human specific FunRich database, users can download data from the UniProt database, which currently supports 20 different taxonomies against which enrichment analysis can be performed. Moreover, the users can build their own custom databases and perform the enrichment analysis irrespective of organism. In addition to proteomics datasets, the custom database allows for the tool to be used for genomics, lipidomics and metabolomics datasets. Thus, FunRich allows for complete database customization and thereby permits for the tool to be exploited as a skeleton for enrichment analysis irrespective of the data type or organism used. FunRich (http://www.funrich.org) is user-friendly and provides graphical representation (Venn, pie charts, bar graphs, column, heatmap and doughnuts) of the data with customizable font, scale and color (publication quality).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The biochemical basis of microRNA targeting efficacy

              MicroRNAs (miRNAs) act within Argonaute proteins to guide repression of mRNA targets. Although various approaches have provided insight into target recognition, the sparsity of miRNA–target affinity measurements has limited understanding and prediction of targeting efficacy. Here, we adapted RNA bind-n-seq to enable measurement of relative binding affinities between Argonaute–miRNA complexes and all ≤12-nucleotide sequences. This approach revealed noncanonical target sites unique to each miRNA, miRNA-specific differences in canonical target-site affinities, and a 100-fold impact of dinucleotides flanking each site. These data enabled construction of a biochemical model of miRNA-mediated repression, which was extended to all miRNA sequences using a convolutional neural network. This model substantially improved prediction of cellular repression, thereby providing a biochemical basis for quantitatively integrating miRNAs into gene-regulatory networks.
                Bookmark

                Author and article information

                Contributors
                Journal
                Noncoding RNA Res
                Noncoding RNA Res
                Non-coding RNA Research
                KeAi Publishing
                2468-0540
                20 May 2024
                December 2024
                20 May 2024
                : 9
                : 4
                : 1040-1049
                Affiliations
                [a ]Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
                [b ]Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
                [c ]Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
                Author notes
                [* ]Corresponding author. Department of Cardiovascular Surgery, Changhai Hospital, 168 Changhai Rd, Shanghai 200433, China. dearwgk@ 123456smmu.edu.cn
                [** ]Corresponding author. Department of Cardiovascular Surgery, Changhai Hospital, 168 Changhai Rd, Shanghai 200433, China. zhiyunx@ 123456hotmail.com
                [*** ]Corresponding author. drzhuyuming@ 123456163.com
                [1]

                These authors contributed equally to this work.

                Article
                S2468-0540(24)00093-3
                10.1016/j.ncrna.2024.05.006
                11254500
                39022686
                b07c5b93-b710-4421-8c8c-973ed70fd1dd
                © 2024 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 21 February 2024
                : 9 May 2024
                : 19 May 2024
                Categories
                Original Research Article

                thoracic aortic dissection,extracellular matrix degradation,mir-20a,tissue inhibitors of metalloproteinase 2,nanog

                Comments

                Comment on this article