48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Drosophila Yemanuclein and HIRA Cooperate for De Novo Assembly of H3.3-Containing Nucleosomes in the Male Pronucleus

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The differentiation of post-meiotic spermatids in animals is characterized by a unique reorganization of their nuclear architecture and chromatin composition. In many species, the formation of sperm nuclei involves the massive replacement of nucleosomes with protamines, followed by a phase of extreme nuclear compaction. At fertilization, the reconstitution of a nucleosome-based paternal chromatin after the removal of protamines requires the deposition of maternally provided histones before the first round of DNA replication. This process exclusively uses the histone H3 variant H3.3 and constitutes a unique case of genome-wide replication-independent (RI) de novo chromatin assembly. We had previously shown that the histone H3.3 chaperone HIRA plays a central role for paternal chromatin assembly in Drosophila. Although several conserved HIRA-interacting proteins have been identified from yeast to human, their conservation in Drosophila, as well as their actual implication in this highly peculiar RI nucleosome assembly process, is an open question. Here, we show that Yemanuclein (YEM), the Drosophila member of the Hpc2/Ubinuclein family, is essential for histone deposition in the male pronucleus. yem loss of function alleles affect male pronucleus formation in a way remarkably similar to Hira mutants and abolish RI paternal chromatin assembly. In addition, we demonstrate that HIRA and YEM proteins interact and are mutually dependent for their targeting to the decondensing male pronucleus. Finally, we show that the alternative ATRX/XNP-dependent H3.3 deposition pathway is not involved in paternal chromatin assembly, thus underlining the specific implication of the HIRA/YEM complex for this essential step of zygote formation.

          Author Summary

          Chromosome organization relies on a basic functional unit called the nucleosome, in which DNA is wrapped around a core of histone proteins. However, during male gamete formation, the majority of histones are replaced by sperm-specific proteins that are adapted to sexual reproduction but incompatible with the formation of the first zygotic nucleus. These proteins must therefore be replaced by histones upon fertilization, in a replication-independent chromatin assembly process that requires the histone deposition factor HIRA. In this study, we identified the protein Yemanuclein (YEM) as a new partner of HIRA at fertilization. We show that, in eggs laid by yem mutant females, the male pronucleus fails to assemble its nucleosomes, resulting in the loss of paternal chromosomes at the first zygotic division. In addition, we found that YEM and HIRA are mutually dependent to perform chromatin assembly at fertilization, demonstrating that they tightly cooperate in vivo. Finally, we demonstrate that the replication-independent chromatin assembly factor ATRX/XNP is not involved in the assembly of paternal nucleosomes. In conclusion, our results shed new light into critical mechanisms controlling paternal chromosome formation at fertilization.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases.

          Germ-line transformation via transposable elements is a powerful tool to study gene function in Drosophila melanogaster. However, some inherent characteristics of transposon-mediated transgenesis limit its use for transgene analysis. Here, we circumvent these limitations by optimizing a phiC31-based integration system. We generated a collection of lines with precisely mapped attP sites that allow the insertion of transgenes into many different predetermined intergenic locations throughout the fly genome. By using regulatory elements of the nanos and vasa genes, we established endogenous sources of the phiC31 integrase, eliminating the difficulties of coinjecting integrase mRNA and raising the transformation efficiency. Moreover, to discriminate between specific and rare nonspecific integration events, a white gene-based reconstitution system was generated that enables visual selection for precise attP targeting. Finally, we demonstrate that our chromosomal attP sites can be modified in situ, extending their scope while retaining their properties as landing sites. The efficiency, ease-of-use, and versatility obtained here with the phiC31-based integration system represents an important advance in transgenesis and opens up the possibility of systematic, high-throughput screening of large cDNA sets and regulatory elements.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31.

            The phiC31 integrase functions efficiently in vitro and in Escherichia coli, yeast, and mammalian cells, mediating unidirectional site-specific recombination between its attB and attP recognition sites. Here we show that this site-specific integration system also functions efficiently in Drosophila melanogaster in cultured cells and in embryos. Intramolecular recombination in S2 cells on transfected plasmid DNA carrying the attB and attP recognition sites occurred at a frequency of 47%. In addition, several endogenous pseudo attP sites were identified in the fly genome that were recognized by the integrase and used as substrates for integration in S2 cells. Two lines of Drosophila were created by integrating an attP site into the genome with a P element. phiC31 integrase injected into embryos as mRNA functioned to promote integration of an attB-containing plasmid into the attP site, resulting in up to 55% of fertile adults producing transgenic offspring. A total of 100% of these progeny carried a precise integration event at the genomic attP site. These experiments demonstrate the potential for precise genetic engineering of the Drosophila genome with the phiC31 integrase system and will likely benefit research in Drosophila and other insects.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones.

              Nucleosome disruption and replacement are crucial activities that maintain epigenomes, but these highly dynamic processes have been difficult to study. Here, we describe a direct method for measuring nucleosome turnover dynamics genome-wide. We found that nucleosome turnover is most rapid over active gene bodies, epigenetic regulatory elements, and replication origins in Drosophila cells. Nucleosomes turn over faster at sites for trithorax-group than polycomb-group protein binding, suggesting that nucleosome turnover differences underlie their opposing activities and challenging models for epigenetic inheritance that rely on stability of histone marks. Our results establish a general strategy for studying nucleosome dynamics and uncover nucleosome turnover differences across the genome that are likely to have functional importance for epigenome maintenance, gene regulation, and control of DNA replication.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                February 2013
                February 2013
                7 February 2013
                : 9
                : 2
                : e1003285
                Affiliations
                [1 ]Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR5534, Université Claude Bernard Lyon 1, Villeurbanne, France
                [2 ]Institut de Génétique Humaine, CNRS UPR 1142, Montpellier, France
                [3 ]Laboratoire de Biologie Moléculaire des Herpesvirus, INSERM U758, Ecole Normale Supérieure de Lyon, France
                University of Cambridge, United Kingdom
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: GAO OA-A BL. Performed the experiments: GAO AA REM MC LMS-T BH OA-A BL. Analyzed the data: GAO PC OA-A BL. Contributed reagents/materials/analysis tools: HG. Wrote the paper: GAO OA-A BL.

                [¤a]

                Current address: Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America

                [¤b]

                Current address: Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America

                Article
                PGENETICS-D-12-02499
                10.1371/journal.pgen.1003285
                3567178
                08c3c632-33fe-4095-845d-71641201bbcd
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 2 October 2012
                : 14 December 2012
                Page count
                Pages: 13
                Funding
                Work in the laboratory of BL was supported by the CNRS, the French Ministry of Research, and the ANR ( http://www.agence-nationale-recherche.fr/) (ANR-08-BLAN-0139-01). GAO was supported by the French Ministry of Research and the Association pour la Recherche sur le Cancer (Fondation ARC, http://www.arc-cancer.net/)(DOC20100601010). Work in the laboratory of OA-A was supported by the CNRS and the Fondation ARC (ARC 9932). REM was a recipient of a 3-year fellowship from the French Ministry of Research and a 1-year ARC fellowship. AA has been supported by a 4-year fellowship from the Egyptian Government. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Genetics
                Epigenetics
                Chromatin

                Genetics
                Genetics

                Comments

                Comment on this article