8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biomarkers for Alzheimer’s Disease (AD) and the Application of Precision Medicine

      discussion

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An accurate diagnosis of Alzheimer’s disease (AD) currently stands as one of the most difficult and challenging in all of clinical neurology. AD is typically diagnosed using an integrated knowledge and assessment of multiple biomarkers and interrelated factors. These include the patient’s age, gender and lifestyle, medical and genetic history (both clinical- and family-derived), cognitive, physical, behavioral and geriatric assessment, laboratory examination of multiple AD patient biofluids, especially within the systemic circulation (blood serum) and cerebrospinal fluid (CSF), multiple neuroimaging-modalities of the brain’s limbic system and/or retina, followed up in many cases by post-mortem neuropathological examination to finally corroborate the diagnosis. More often than not, prospective AD cases are accompanied by other progressive, age-related dementing neuropathologies including, predominantly, a neurovascular and/or cardiovascular component, multiple-infarct dementia (MID), frontotemporal dementia (FTD) and/or strokes or ‘mini-strokes’ often integrated with other age-related neurological and non-neurological disorders including cardiovascular disease and cancer. Especially over the last 40 years, enormous research efforts have been undertaken to discover, characterize, and quantify more effectual and reliable biological markers for AD, especially during the pre-clinical or prodromal stages of AD so that pre-emptive therapeutic treatment strategies may be initiated. While a wealth of genetic, neurobiological, neurochemical, neuropathological, neuroimaging and other diagnostic information obtainable for a single AD patient can be immense: ( i) it is currently challenging to integrate and formulate a definitive diagnosis for AD from this multifaceted and multidimensional information; and ( ii) these data are unfortunately not directly comparable with the etiopathological patterns of other AD patients even when carefully matched for age, gender, familial genetics, and drug history. Four decades of AD research have repeatedly indicated that diagnostic profiles for AD are reflective of an extremely heterogeneous neurological disorder. This commentary will illuminate the heterogeneity of biomarkers for AD, comment on emerging investigative approaches and discuss why ‘precision medicine is emerging as our best paradigm yet for the most accurate and definitive prediction, diagnosis, and prognosis of this insidious and lethal brain disorder.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The neuropathological diagnosis of Alzheimer’s disease

          Alzheimer’s disease is a progressive neurodegenerative disease most often associated with memory deficits and cognitive decline, although less common clinical presentations are increasingly recognized. The cardinal pathological features of the disease have been known for more than one hundred years, and today the presence of these amyloid plaques and neurofibrillary tangles are still required for a pathological diagnosis. Alzheimer’s disease is the most common cause of dementia globally. There remain no effective treatment options for the great majority of patients, and the primary causes of the disease are unknown except in a small number of familial cases driven by genetic mutations. Confounding efforts to develop effective diagnostic tools and disease-modifying therapies is the realization that Alzheimer’s disease is a mixed proteinopathy (amyloid and tau) frequently associated with other age-related processes such as cerebrovascular disease and Lewy body disease. Defining the relationships between and interdependence of various co-pathologies remains an active area of investigation. This review outlines etiologically-linked pathologic features of Alzheimer’s disease, as well as those that are inevitable findings of uncertain significance, such as granulovacuolar degeneration and Hirano bodies. Other disease processes that are frequent, but not inevitable, are also discussed, including pathologic processes that can clinically mimic Alzheimer’s disease. These include cerebrovascular disease, Lewy body disease, TDP-43 proteinopathies and argyrophilic grain disease. The purpose of this review is to provide an overview of Alzheimer’s disease pathology, its defining pathologic substrates and the related pathologies that can affect diagnosis and treatment. Electronic supplementary material The online version of this article (10.1186/s13024-019-0333-5) contains supplementary material, which is available to authorized users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Diagnosis and Management of Dementia: Review

            Worldwide, 47 million people live with dementia and, by 2050, the number is expected to increase to 131 million. Dementia is an acquired loss of cognition in multiple cognitive domains sufficiently severe to affect social or occupational function. In the US, Alzheimer’s disease (AD) affects 5.8 million people. However, dementia is commonly associated with more than one neuropathology, usually AD with cerebrovascular pathology. Diagnosing dementia requires a history evaluating for cognitive decline and impairment in daily activities, with corroboration from a close friend or family member, in addition to a moderately extended mental status examination by a clinician to delineate impairments in memory, language, attention, visuospatial cognition such as spatial orientation, executive function, and mood. Brief cognitive impairment screening questionnaires can assist in initiating and organizing the cognitive assessment. However, if the assessment is inconclusive (e.g., symptoms present, but normal examination), neuropsychological testing can help with a diagnosis. Physical examination may help identify the etiology of dementia. For example, focal neurologic abnormalities suggest stroke. Brain neuroimaging may demonstrate structural changes including, but not limited to, focal atrophy, infarcts, and tumor, that may not be identified on physical examination. Additional evaluation with cerebrospinal fluid assays or genetic testing should be considered in atypical dementia cases, such as age of onset under 65 years, rapid symptom onset, and/or impairment in multiple cognitive domains but not episodic memory. For treatment, patients benefit from non-pharmacologic approaches, including cognitively engaging activities such as reading, physical exercise such as walking, and socialization such as family gatherings. Pharmacologic approaches can provide modest symptomatic relief. For AD, this includes an acetylcholinesterase inhibitor such as donepezil for mild-to-severe dementia, and memantine (used alone or as an add-on therapy) for moderate-to-severe dementia. Rivastigmine is approved for the symptomatic treatment of Parkinson’s disease dementia. AD currently affects 5.8 million persons in the US, and is a common cause of dementia which is usually accompanied by other neuropathology. Causes of dementia can be diagnosed by medical history, cognitive and physical examination, laboratory testing, and brain imaging. Management should include both non-pharmacologic and pharmacologic approaches.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biomarkers for Alzheimer's disease: current status and prospects for the future

              Accumulating data from the clinical research support that the core Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers amyloid-β (Aβ42), total tau (T-tau), and phosphorylated tau (P-tau) reflect key elements of AD pathophysiology. Importantly, a large number of clinical studies very consistently show that these biomarkers contribute with diagnostically relevant information, also in the early disease stages. Recent technical developments have made it possible to measure these biomarkers using fully automated assays with high precision and stability. Standardization efforts have given certified reference materials for CSF Aβ42, with the aim to harmonize results between assay formats that would allow for uniform global reference limits and cut-off values. These encouraging developments have led to that the core AD CSF biomarkers have a central position in the novel diagnostic criteria for the disease and in the recent National Institute on Aging and Alzheimer's Association biological definition of AD. Taken together, this progress will likely serve as the basis for a more general introduction of these diagnostic tests in clinical routine practice. However, the heterogeneity of pathology in late-onset AD calls for an expansion of the AD CSF biomarker toolbox with additional biomarkers reflecting additional aspects of AD pathophysiology. One promising candidate is the synaptic protein neurogranin that seems specific for AD and predicts future rate of cognitive deterioration. Further, recent studies bring hope for easily accessible and cost-effective screening tools in the early diagnostic evaluation of patients with cognitive problems (and suspected AD) in primary care. In this respect, technical developments with ultrasensitive immunoassays and novel mass spectrometry techniques give promise of biomarkers to monitor brain amyloidosis (the Aβ42/40 or APP669-711/Aβ42 ratios) and neurodegeneration (tau and neurofilament light proteins) in plasma samples, but future studies are warranted to validate these promising results further.
                Bookmark

                Author and article information

                Journal
                J Pers Med
                J Pers Med
                jpm
                Journal of Personalized Medicine
                MDPI
                2075-4426
                21 September 2020
                September 2020
                : 10
                : 3
                : 138
                Affiliations
                [1 ]LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA 70112, USA; yzhao4@ 123456lsuhsc.edu
                [2 ]Department of Cell Biology and Anatomy, LSU-HSC, New Orleans, LA 70112, USA
                [3 ]Department of Ophthalmology, LSU Neuroscience Center, LSU-HSC, New Orleans, LA 70112, USA
                [4 ]Department Neurology, LSU Neuroscience Center, LSU-HSC, New Orleans, LA 70112, USA
                [5 ]Sorbonne University, GRC no 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière hospital, F-75013 Paris, France; a_vergallo@ 123456yahoo.com (A.V.); slista@ 123456libero.it (S.L.); harald.hampel@ 123456med.uni-muenchen.de (H.H.)
                [6 ]Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’Hôpital, F-75013 Paris, France
                [7 ]Department of Neurology, Institute of Memory and Alzheimer’s Disease (IM2A), Pitié-Salpêtrière Hospital, AP-HP, F-75013 Paris, France
                Author notes
                [* ]Correspondence: wlukiw@ 123456lsuhsc.edu
                Article
                jpm-10-00138
                10.3390/jpm10030138
                7565758
                32967128
                d4ef532b-da39-4f78-91f1-8ffa9813716d
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 18 August 2020
                : 15 September 2020
                Categories
                Commentary

                alzheimer’s disease (ad),biomarkers,diagnostics,messenger rna,microrna,neuroimaging,neurotropic microbes,precision medicine,prognostics

                Comments

                Comment on this article