2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Fluorofenidone ameliorates cholestasis and fibrosis by inhibiting hepatic Erk/-Egr-1 signaling and Tgfβ1/Smad pathway in mice.

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cholestasis is characterized by intrahepatic accumulation of bile acids (BAs), resulting in liver injury, fibrosis, and liver failure. To date, only ursodeoxycholic acid and obeticholic acid have been approved for the treatment of cholestasis. As fluorofenidone (AKF-PD) was previously reported to play significant anti-fibrotic and anti-inflammatory roles in various diseases, we investigated whether AKF-PD ameliorates cholestasis. A mouse model of cholestasis was constructed by administering a 0.1 % 3,5-diethoxycarbonyl-1,4-dihydroxychollidine (DDC) diet for 14 days. Male C57BL/6 J mice were treated with either AKF-PD or pirfenidone (PD) orally in addition to the DDC diet. Serum and liver tissues were subsequently collected and analyzed. We found that AKF-PD significantly reduced the levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and total bile salts (TBA), as well as hepatic bile acids (BAs) levels. Hepatic histological analyses demonstrated that AKF-PD markedly attenuated hepatic inflammation and fibrosis. Further mechanistic analyses revealed that AKF-PD markedly inhibited expression of Cyp7a1, an enzyme key to BAs synthesis, by increasing Fxr nuclear translocation, and decreased hepatic inflammation by attenuating Erk/-Egr-1-mediated expression of inflammatory cytokines and chemokines Tnfα, Il-1β, Il-6, Ccl2, Ccl5 and Cxcl10. Moreover, AKF-PD was found to substantially reduce liver fibrosis via inhibition of Tgfβ1/Smad pathway in our mouse model. Here, we found that AKF-PD effectively attenuates cholestasis and hepatic fibrosis in the mouse model of DDC-induced cholestasis. As such, AKF-PD warrants further investigation as a candidate drug for treatment of cholestasis.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Epithelial-mesenchymal transitions in development and disease.

          The epithelial to mesenchymal transition (EMT) plays crucial roles in the formation of the body plan and in the differentiation of multiple tissues and organs. EMT also contributes to tissue repair, but it can adversely cause organ fibrosis and promote carcinoma progression through a variety of mechanisms. EMT endows cells with migratory and invasive properties, induces stem cell properties, prevents apoptosis and senescence, and contributes to immunosuppression. Thus, the mesenchymal state is associated with the capacity of cells to migrate to distant organs and maintain stemness, allowing their subsequent differentiation into multiple cell types during development and the initiation of metastasis.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Idiopathic Pulmonary Fibrosis

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A guide to chemokines and their receptors

              The chemokines (or chemotactic cytokines) are a large family of small, secreted proteins that signal through cell surface G protein‐coupled heptahelical chemokine receptors. They are best known for their ability to stimulate the migration of cells, most notably white blood cells (leukocytes). Consequently, chemokines play a central role in the development and homeostasis of the immune system, and are involved in all protective or destructive immune and inflammatory responses. Classically viewed as inducers of directed chemotactic migration, it is now clear that chemokines can stimulate a variety of other types of directed and undirected migratory behavior, such as haptotaxis, chemokinesis, and haptokinesis, in addition to inducing cell arrest or adhesion. However, chemokine receptors on leukocytes can do more than just direct migration, and these molecules can also be expressed on, and regulate the biology of, many nonleukocytic cell types. Chemokines are profoundly affected by post‐translational modification, by interaction with the extracellular matrix (ECM), and by binding to heptahelical ‘atypical’ chemokine receptors that regulate chemokine localization and abundance. This guide gives a broad overview of the chemokine and chemokine receptor families; summarizes the complex physical interactions that occur in the chemokine network; and, using specific examples, discusses general principles of chemokine function, focusing particularly on their ability to direct leukocyte migration.
                Bookmark

                Author and article information

                Journal
                Biochim Biophys Acta Mol Basis Dis
                Biochimica et biophysica acta. Molecular basis of disease
                Elsevier BV
                1879-260X
                0925-4439
                Dec 01 2022
                : 1868
                : 12
                Affiliations
                [1 ] Department of Hepatology and Infectious Diseases, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center, and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing 400038, China.
                [2 ] Department of Hepatology and Infectious Diseases, Xiangya Hospital, Central South University, Changsha 410008, China.
                [3 ] Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center, and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing 400038, China.
                [4 ] Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.
                [5 ] Department of Nephrology, Xiangya Hospital, Central South University, Changsha 410008, China.
                [6 ] Department of Hepatology and Infectious Diseases, Xiangya Hospital, Central South University, Changsha 410008, China. Electronic address: sfp1988@csu.edu.cn.
                [7 ] Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center, and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing 400038, China. Electronic address: jin.chai@cldcsw.org.
                Article
                S0925-4439(22)00227-7
                10.1016/j.bbadis.2022.166556
                36154893
                c602ae80-4118-48cd-bad2-b8173e526bd0
                History

                Cholestasis,Erk/-Egr-1 signaling,Fibrosis,Fluorofenidone,Tgfβ1/Smad pathway

                Comments

                Comment on this article