117
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer

      research-article
      , MS 1 , , , PhD 2 , , MD, PhD 3 , , PhD 1 , , PhD 1 , , PhD 4 , , PhD 4 , and the CAMELYON16 Consortium , BS 4 , , MD, MS 3 , , MD, MS 4 , , MS 4 , 5 , , MS 3 , , MD, PhD 6 , , MD, PhD 4 , , MD, MS 7 , , MD, PhD 7 , 8 , , PhD 7 , 8 , , PhD 8 , 9 , 10 , , PhD 7 , , BS 11 , , MS 11 , 12 , , PhD 11 , , PhD 12 , , MS 12 , , PhD 12 , , MS 13 , , PhD 13 , , BS, MBA 14 , , PhD 15 , 16 , , MS 15 , , MD 17 , , MS 18 , , MS 19 , , MS 19 , , MS 20 , , MS 21 , , PhD 21 , 22 , , MS 23 , , PhD 21 , , BS 21 , , MD 22 , , MS 4 , , BS 24 , , PhD 24 , , MS 25 , , MS 24 , 26 , , PhD 27 , , PhD 24 , 28 , , MS 24 , , PhD 29 , , MS 29 , , MS 29 , , PhD 29 , , PhD 29 , , MS 30 , , PhD 30 , , PhD 30 , , PhD 30 , , PhD 31 , , PhD 32 , , MS 32 , , MS 32 , , PhD 33 , , PhD 33 , , PhD 33 , , PhD 33 ,   , PhD 34 , 35 , , MS 36
      JAMA
      American Medical Association

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Key Points

          Question

          What is the discriminative accuracy of deep learning algorithms compared with the diagnoses of pathologists in detecting lymph node metastases in tissue sections of women with breast cancer?

          Finding

          In cross-sectional analyses that evaluated 32 algorithms submitted as part of a challenge competition, 7 deep learning algorithms showed greater discrimination than a panel of 11 pathologists in a simulated time-constrained diagnostic setting, with an area under the curve of 0.994 (best algorithm) vs 0.884 (best pathologist).

          Meaning

          These findings suggest the potential utility of deep learning algorithms for pathological diagnosis, but require assessment in a clinical setting.

          Abstract

          Importance

          Application of deep learning algorithms to whole-slide pathology images can potentially improve diagnostic accuracy and efficiency.

          Objective

          Assess the performance of automated deep learning algorithms at detecting metastases in hematoxylin and eosin–stained tissue sections of lymph nodes of women with breast cancer and compare it with pathologists’ diagnoses in a diagnostic setting.

          Design, Setting, and Participants

          Researcher challenge competition (CAMELYON16) to develop automated solutions for detecting lymph node metastases (November 2015-November 2016). A training data set of whole-slide images from 2 centers in the Netherlands with (n = 110) and without (n = 160) nodal metastases verified by immunohistochemical staining were provided to challenge participants to build algorithms. Algorithm performance was evaluated in an independent test set of 129 whole-slide images (49 with and 80 without metastases). The same test set of corresponding glass slides was also evaluated by a panel of 11 pathologists with time constraint (WTC) from the Netherlands to ascertain likelihood of nodal metastases for each slide in a flexible 2-hour session, simulating routine pathology workflow, and by 1 pathologist without time constraint (WOTC).

          Exposures

          Deep learning algorithms submitted as part of a challenge competition or pathologist interpretation.

          Main Outcomes and Measures

          The presence of specific metastatic foci and the absence vs presence of lymph node metastasis in a slide or image using receiver operating characteristic curve analysis. The 11 pathologists participating in the simulation exercise rated their diagnostic confidence as definitely normal, probably normal, equivocal, probably tumor, or definitely tumor.

          Results

          The area under the receiver operating characteristic curve (AUC) for the algorithms ranged from 0.556 to 0.994. The top-performing algorithm achieved a lesion-level, true-positive fraction comparable with that of the pathologist WOTC (72.4% [95% CI, 64.3%-80.4%]) at a mean of 0.0125 false-positives per normal whole-slide image. For the whole-slide image classification task, the best algorithm (AUC, 0.994 [95% CI, 0.983-0.999]) performed significantly better than the pathologists WTC in a diagnostic simulation (mean AUC, 0.810 [range, 0.738-0.884]; P < .001). The top 5 algorithms had a mean AUC that was comparable with the pathologist interpreting the slides in the absence of time constraints (mean AUC, 0.960 [range, 0.923-0.994] for the top 5 algorithms vs 0.966 [95% CI, 0.927-0.998] for the pathologist WOTC).

          Conclusions and Relevance

          In the setting of a challenge competition, some deep learning algorithms achieved better diagnostic performance than a panel of 11 pathologists participating in a simulation exercise designed to mimic routine pathology workflow; algorithm performance was comparable with an expert pathologist interpreting whole-slide images without time constraints. Whether this approach has clinical utility will require evaluation in a clinical setting.

          Abstract

          This diagnostic accuracy study compares the ability of machine learning algorithms vs clinical pathologists to detect cancer metastases in whole-slide images of axillary lymph nodes dissected from women with breast cancer.

          Related collections

          Author and article information

          Journal
          JAMA
          JAMA
          JAMA
          JAMA
          American Medical Association
          0098-7484
          1538-3598
          12 December 2017
          12 December 2017
          12 June 2018
          : 318
          : 22
          : 2199-2210
          Affiliations
          [1 ]Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
          [2 ]Medical Image Analysis Group, Eindhoven University of Technology, Eindhoven, the Netherlands
          [3 ]Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
          [4 ]Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
          [5 ]Laboratorium Pathologie Oost Nederland, Hengelo, the Netherlands
          [6 ]Rijnstate Hospital, Arnhem, the Netherlands
          [7 ]BeckLab, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
          [8 ]PathAI, Cambridge, Massachusetts
          [9 ]Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts
          [10 ]Harker School, San Jose, California
          [11 ]Center for Clinical Data Science, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
          [12 ]Chinese University of Hong Kong, Hong Kong, China
          [13 ]ExB Research and Development GmbH, Munich, Germany
          [14 ]Munich Business School, Munich, Germany
          [15 ]Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara, Turkey
          [16 ]Neuroscience and Neurotechnology, Graduate School of Natural and Applied Sciences, Middle East Technical University, Ankara, Turkey
          [17 ]Cancer System Biology Laboratory, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
          [18 ]NLP LOGIX, Jacksonville, Florida
          [19 ]Smart Imaging Technologies, Houston, Texas
          [20 ]Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
          [21 ]Tissue Image Analytics Lab, Department of Computer Science, University of Warwick, Coventry, United Kingdom
          [22 ]Department of Pathology, University Hospitals Coventry and Warwickshire National Health Service Foundation Trust, Coventry, United Kingdom
          [23 ]Department of Computer Science and Engineering, Qatar University, Doha, Qatar
          [24 ]Hochschule für Technik und Wirtschaft, Berlin, Germany
          [25 ]BioMediTech Institute and Faculty of Medicine and Life Sciences, Tampere University of Technology, Tampere, Finland
          [26 ]BioMediTech Institute and Faculty of Biomedical Science and Engineering, Tampere University of Technology, Tampere, Finland
          [27 ]Prostate Cancer Research Center, Faculty of Medicine and Life Sciences and BioMediTech, University of Tampere, Tampere, Finland
          [28 ]Faculty of Computing and Electrical Engineering, Tampere University of Technology, Pori, Finland
          [29 ]Technical University of Munich, Munich, Germany
          [30 ]Department of Bioinformatic Engineering, Osaka University
          [31 ]University of South Florida, Tampa, Florida
          [32 ]Biomedical Image Analysis Department, United Institute of Informatics Problems, Belarus National Academy of Sciences, Minsk, Belarus
          [33 ]Visilab, University of Castilla-La Mancha, Ciudad Real, Spain
          [34 ]INSERM, Laboratoire d’Imagerie Biomédicale, Sorbonne Universiteś, Pierre and Marie Curie University, Paris, France
          [35 ]Pontifical Catholic University of Peru, San Miguel, Lima, Peru
          [36 ]Sorbonne University, Pierre and Marie Curie University, Paris, France
          Author notes
          Article Information
          Group Information: The CAMELYON16 Consortium authors and collaborators are listed at the end of this article.
          Accepted for Publication: October 26, 2017.
          Corresponding Author: Babak Ehteshami Bejnordi, MS, Radboud University Medical Center, Postbus 9101, 6500 HB Nijmegen ( ehteshami@ 123456babakint.com ).
          The CAMELYON16 Consortium Authors: Meyke Hermsen, BS; Quirine F Manson, MD, MS; Maschenka Balkenhol, MD, MS; Oscar Geessink, MS; Nikolaos Stathonikos, MS; Marcory CRF van Dijk, MD, PhD; Peter Bult, MD, PhD; Francisco Beca, MD, MS; Andrew H Beck, MD, PhD; Dayong Wang, PhD; Aditya Khosla, PhD; Rishab Gargeya; Humayun Irshad, PhD; Aoxiao Zhong, BS; Qi Dou, MS; Quanzheng Li, PhD; Hao Chen, PhD; Huang-Jing Lin, MS; Pheng-Ann Heng, PhD; Christian Haß, MS; Elia Bruni, PhD; Quincy Wong, BS, MBA; Ugur Halici, PhD; Mustafa Ümit Öner, MS; Rengul Cetin-Atalay, MD; Matt Berseth, MS; Vitali Khvatkov, MS; Alexei Vylegzhanin, MS; Oren Kraus, MS; Muhammad Shaban, MS; Nasir Rajpoot, PhD; Ruqayya Awan, MS; Korsuk Sirinukunwattana, PhD; Talha Qaiser, BS; Yee-Wah Tsang, MD; David Tellez, MS; Jonas Annuscheit, BS; Peter Hufnagl, PhD; Mira Valkonen, MS; Kimmo Kartasalo, MS; Leena Latonen, PhD; Pekka Ruusuvuori, PhD; Kaisa Liimatainen, MS; Shadi Albarqouni, PhD; Bharti Mungal, MS; Ami George, MS; Stefanie Demirci, PhD; Nassir Navab, PhD; Seiryo Watanabe, MS; Shigeto Seno, PhD; Yoichi Takenaka, PhD; Hideo Matsuda, PhD; Hady Ahmady Phoulady, PhD; Vassili Kovalev, PhD; Alexander Kalinovsky, MS; Vitali Liauchuk, MS; Gloria Bueno, PhD; M. Milagro Fernandez-Carrobles, PhD; Ismael Serrano, PhD; Oscar Deniz, PhD; Daniel Racoceanu, PhD; Rui Venâncio, MS.
          Affiliations of The CAMELYON16 Consortium Authors: Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands (Manson, Stathonikos); Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands (Hermsen, Balkenhol, Geessink, Bult, Tellez); Laboratorium Pathologie Oost Nederland, Hengelo, the Netherlands (Geessink); Rijnstate Hospital, Arnhem, the Netherlands (van Dijk); BeckLab, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (Beca, Beck, Wang, Irshad); PathAI, Cambridge, Massachusetts (Beck, Wang, Khosla); Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts (Khosla); Harker School, San Jose, California (Gargeya); Center for Clinical Data Science, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (Zhong, Dou, Li); Chinese University of Hong Kong, Hong Kong, China (Dou, Chen, Lin, Heng); ExB Research and Development GmbH, Munich, Germany (Haß, Bruni); Munich Business School, Munich, Germany (Wong); Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara, Turkey (Halici, Öner); Neuroscience and Neurotechnology, Graduate School of Natural and Applied Sciences, Middle East Technical University, Ankara, Turkey (Halici); Cancer System Biology Laboratory, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey (Cetin-Atalay); NLP LOGIX, Jacksonville, Florida (Berseth); Smart Imaging Technologies, Houston, Texas (Khvatkov, Vylegzhanin); Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada (Kraus); Tissue Image Analytics Lab, Department of Computer Science, University of Warwick, Coventry, United Kingdom (Shaban, Rajpoot, Sirinukunwattana, Qaiser); Department of Pathology, University Hospitals Coventry and Warwickshire National Health Service Foundation Trust, Coventry, United Kingdom (Rajpoot, Tsang); Department of Computer Science and Engineering, Qatar University, Doha, Qatar (Awan); Hochschule für Technik und Wirtschaft, Berlin, Germany (Annuscheit, Hufnagl, Kartasalo, Ruusuvuori, Liimatainen); BioMediTech Institute and Faculty of Medicine and Life Sciences, Tampere University of Technology, Tampere, Finland (Valkonen); BioMediTech Institute and Faculty of Biomedical Science and Engineering, Tampere University of Technology, Tampere, Finland (Kartasalo); Prostate Cancer Research Center, Faculty of Medicine and Life Sciences and BioMediTech, University of Tampere, Tampere, Finland (Latonen); Faculty of Computing and Electrical Engineering, Tampere University of Technology, Pori, Finland (Ruusuvuori); Technical University of Munich, Munich, Germany (Albarqouni, Mungal, George, Demirci, Navab); Department of Bioinformatic Engineering, Osaka University (Watanabe, Seno, Takenaka, Matsuda); University of South Florida, Tampa, Florida (Ahmady Phoulady); Biomedical Image Analysis Department, United Institute of Informatics Problems, Belarus National Academy of Sciences, Minsk, Belarus (Kovalev, Kalinovsky, Liauchuk); Visilab, University of Castilla-La Mancha, Ciudad Real, Spain (Bueno, Fernandez-Carrobles, Serrano, Deniz); INSERM, Laboratoire d’Imagerie Biomédicale, Sorbonne Universiteś, Pierre and Marie Curie University, Paris, France (Racoceanu); Pontifical Catholic University of Peru, San Miguel, Lima, Peru (Racoceanu); Sorbonne University, Pierre and Marie Curie University, Paris, France (Venâncio).
          Author Contributions: Mr Ehteshami Bejnordi had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.
          Concept and design: Ehteshami Bejnordi, Veta, van Diest, van Ginneken, Karssemeijer, Litjens, van der Laak, Beca, Lin, Takenaka.
          Acquisition, analysis, or interpretation of data: Ehteshami Bejnordi, Veta, van Diest, van Ginneken, Litjens, van der Laak, Hermsen, Manson, Balkenhol, Geessink, Stathonikos, van Dijk, Bult, Beca, Beck, Wang, Khosla, Gargeya, Irshad, Zhong, Dou, Li, Chen, Lin, Heng, Haß, Bruni, Wong, Halici, Ümit Öner, Cetin-Atalay, Berseth, Khvatkov, Vylegzhanin, Kraus, Shaban, Rajpoot, Awan, Sirinukunwattana, Qaiser, Tsang, Tellez, Annuscheit, Hufnagl, Valkonen, Kartasalo, Latonen, Ruusuvuori, Liimatainen, Albarqouni, Munjal, George, Demirci, Navab, Watanabe, Seno, Matsuda, Ahmady Phoulady, Kovalev, Kalinovsky, Liauchuk, Bueno, Fernandez-Carrobles, Serrano, Deniz, Racoceanu, Venâncio.
          Drafting of the manuscript: Ehteshami Bejnordi, Veta, Litjens, van der Laak, Beca, Berseth, Sirinukunwattana, Valkonen, Latonen, Ruusuvuori, Liimatainen, Takenaka.
          Critical revision of the manuscript for important intellectual content: Ehteshami Bejnordi, Veta, van Diest, van Ginneken, Karssemeijer, Litjens, van der Laak, Hermsen, Manson, Balkenhol, Geessink, Stathonikos, van Dijk, Bult, Beca, Beck, Wang, Khosla, Gargeya, Irshad, Zhong, Dou, Li, Chen, Lin, Heng, Haß, Bruni, Wong, Halici, Ümit Öner, Cetin-Atalay, Khvatkov, Vylegzhanin, Kraus, Shaban, Rajpoot, Awan, Qaiser, Tsang, Tellez, Annuscheit, Hufnagl, Kartasalo, Albarqouni, Munjal, George, Demirci, Navab, Watanabe, Seno, Matsuda, Ahmady Phoulady, Kovalev, Kalinovsky, Liauchuk, Bueno, Fernandez-Carrobles, Serrano, Deniz, Racoceanu, Venâncio.
          Statistical analysis: Ehteshami Bejnordi, Karssemeijer, Litjens, van der Laak, Wang, Khosla, Gargeya, Irshad, Zhong, Dou, Li, Chen, Lin, Heng, Haß, Bruni, Wong, Halici, Khvatkov, Vylegzhanin, Kraus, Rajpoot, Awan, Qaiser, Tellez, Annuscheit, Valkonen, Latonen, Ruusuvuori, Liimatainen, Munjal, George, Watanabe, Seno, Matsuda, Kovalev, Fernandez-Carrobles, Serrano, Racoceanu.
          Obtained funding: van Ginneken, Karssemeijer, van der Laak, Stathonikos.
          Administrative, technical, or material support: Ehteshami Bejnordi, Veta, van Diest, van Ginneken, Litjens, Hermsen, Manson, Balkenhol, Geessink, Stathonikos, Lin, Demirci.
          Supervision: Veta, van Diest, van Ginneken, Karssemeijer, Litjens, van der Laak, Beca, Latonen, Ruusuvuori, Navab, Takenaka.
          Drs Litjens and van der Laak contributed equally to the supervision of the study.
          Conflict of Interest Disclosures: All authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Dr Veta reported receiving grant funding from Netherlands Organization for Scientific Research. Dr van Ginneken reported being a co-founder of and holding shares from Thirona and receiving grant funding and royalties from Mevis Medical Solutions. Dr Karssemeijer reported receiving holding shares in Volpara Solutions, QView Medical, and ScreenPoint Medical BV; consulting fees from QView Medical; and being an employee of ScreenPoint Medical BV. Dr van der Laak reported receiving personal fees from Philips, ContextVision, and Diagnostic Services Manitoba. Dr Manson reported receiving grant funding from Dutch Cancer Society. Mr Geessink reported receiving grant funding from Dutch Cancer Society. Dr Beca reported receiving personal fees from PathAI and Nvidia and owning stock in Nvidia. Dr Li reported receiving grant funding from the National Institutes of Health. Dr Ruusuvuori reported receiving grant funding from Finnish Funding Agency for Innovation. No other disclosures were reported.
          Funding/Support: Data collection and annotation were funded by Stichting IT Projecten and by the Fonds Economische Structuurversterking (tEPIS/TRAIT project; LSH-FES Program 2009; DFES1029161 and FES1103JJT8U). Fonds Economische Structuurversterking also supported (in kind) web-access to whole-slide images. This work was supported by grant 601040 from the Seventh Framework Programme for Research–funded VPH-PRISM project of the European Union (Mr Ehteshami Bejnordi).
          Role of the Funder/Sponsor: The funders and sponsors had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.
          The CAMELYON16 Collaborators: Ewout Schaafsma, MD, PhD; Benno Kusters, MD, PhD; Michiel vd Brand, MD; Lucia Rijstenberg, MD; Michiel Simons, MD; Carla Wauters, MD, PhD; Willem Vreuls, MD; Heidi Kusters, MD, PhD; Robert Jan van Suylen, MD, PhD; Hans van der Linden, MD, PhD; and Monique Koopmans, MD, PhD; Gijs van Leeuwen, MD, PhD; and Matthijs van Oosterhout, MD, PhD; Peter van Zwam, MD.
          Reproducible Research Statement: The image data used for CAMELYON16 training and testing sets along with the lesion annotations are publicly available at ( https://camelyon16.grand-challenge.org/download/). Because of the large size of the data set, multiple options are provided for accessing/downloading the data. Python and Matlab codes used for performing evaluations of the performance of the algorithms are publicly available at ( https://github.com/computationalpathologygroup/CAMELYON16).
          Additional Contributions: We thank the organizing committee of the 2016 IEEE International Symposium on Biomedical Imaging for hosting the workshop held as part of the study reported in this article, the collaborators, and the funding agencies.
          Article
          PMC5820737 PMC5820737 5820737 joi170113
          10.1001/jama.2017.14585
          5820737
          29234806
          133ddcc8-0f92-4ea6-b9c0-ee61ae0dffd5
          Copyright 2017 American Medical Association. All Rights Reserved.
          History
          : 22 May 2017
          : 16 October 2017
          : 26 October 2017
          Categories
          Research
          Research
          Original Investigation

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Cited by936