54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Childhood cerebellar tumours mirror conserved fetal transcriptional programs

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Summary: The study of the origin and development of cerebellar tumors has been hampered by the complexity and heterogeneity of cerebellar cells that change over the course of development. We used single-cell transcriptomics to study >60,000 cells from the developing murine cerebellum, and show that different molecular subgroups of childhood cerebellar tumors mirror the transcription of cells from distinct, temporally restricted cerebellar lineages. Sonic Hedgehog medulloblastoma transcriptionally mirrors the granule cell hierarchy as expected, whereas Group3 MB resemble Nestin+ve stem cells, Group 4 MB resemble unipolar brush cells, and PFA/PFB ependymoma and cerebellar pilocytic astrocytoma resemble the pre-natal gliogenic progenitor cells. Furthermore, single-cell transcriptomics of human childhood cerebellar tumors demonstrates that many bulk tumors contain a mixed population of cells with divergent differentiation. Our data highlight cerebellar tumors as a disorder of early brain development, and provide a proximate explanation for the peak incidence of cerebellar tumors in early childhood.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Prediction of central nervous system embryonal tumour outcome based on gene expression.

          Embryonal tumours of the central nervous system (CNS) represent a heterogeneous group of tumours about which little is known biologically, and whose diagnosis, on the basis of morphologic appearance alone, is controversial. Medulloblastomas, for example, are the most common malignant brain tumour of childhood, but their pathogenesis is unknown, their relationship to other embryonal CNS tumours is debated, and patients' response to therapy is difficult to predict. We approached these problems by developing a classification system based on DNA microarray gene expression data derived from 99 patient samples. Here we demonstrate that medulloblastomas are molecularly distinct from other brain tumours including primitive neuroectodermal tumours (PNETs), atypical teratoid/rhabdoid tumours (AT/RTs) and malignant gliomas. Previously unrecognized evidence supporting the derivation of medulloblastomas from cerebellar granule cells through activation of the Sonic Hedgehog (SHH) pathway was also revealed. We show further that the clinical outcome of children with medulloblastomas is highly predictable on the basis of the gene expression profiles of their tumours at diagnosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Subtypes of medulloblastoma have distinct developmental origins

            Medulloblastoma encompasses a collection of clinically and molecularly diverse tumor subtypes that together comprise the most common malignant childhood brain tumor1–4. These tumors are thought to arise within the cerebellum, with approximately 25% originating from granule neuron precursor cells (GNPCs) following aberrant activation of the Sonic Hedgehog pathway (hereafter, SHH-subtype)3–8. The pathological processes that drive heterogeneity among the other medulloblastoma subtypes are not known, hindering the development of much needed new therapies. Here, we provide evidence that a discrete subtype of medulloblastoma that contains activating mutations in the WNT pathway effector CTNNB1 (hereafter, WNT-subtype)1,3,4, arises outside the cerebellum from cells of the dorsal brainstem. We found that genes marking human WNT-subtype medulloblastomas are more frequently expressed in the lower rhombic lip (LRL) and embryonic dorsal brainstem than in the upper rhombic lip (URL) and developing cerebellum. Magnetic resonance imaging (MRI) and intra-operative reports showed that human WNT-subtype tumors infiltrate the dorsal brainstem, while SHH-subtype tumors are located within the cerebellar hemispheres. Activating mutations in Ctnnb1 had little impact on progenitor cell populations in the cerebellum, but caused the abnormal accumulation of cells on the embryonic dorsal brainstem that included aberrantly proliferating Zic1+ precursor cells. These lesions persisted in all mutant adult mice and in 15% of cases in which Tp53 was concurrently deleted, progressed to form medulloblastomas that recapitulated the anatomy and gene expression profiles of human WNT-subtype medulloblastoma. We provide the first evidence that subtypes of medulloblastoma have distinct cellular origins. Our data provide an explanation for the marked molecular and clinical differences between SHH and WNT-subtype medulloblastomas and have profound implications for future research and treatment of this important childhood cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog.

              Cerebellar granule cells are the most abundant type of neuron in the brain, but the molecular mechanisms that control their generation are incompletely understood. We show that Sonic hedgehog (Shh), which is made by Purkinje cells, regulates the division of granule cell precursors (GCPs). Treatment of GCPs with Shh prevents differentiation and induces a potent, long-lasting proliferative response. This response can be inhibited by basic fibroblast growth factor or by activation of protein kinase A. Blocking Shh function in vivo dramatically reduces GCP proliferation. These findings provide insight into the mechanisms of normal growth and tumorigenesis in the cerebellum.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Nature
                0028-0836
                1476-4687
                May 1 2019
                Article
                10.1038/s41586-019-1158-7
                441f44da-c8ea-4a77-91c6-92da977ddf22
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article