29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A heterodimer formed by bone morphogenetic protein 9 (BMP9) and BMP10 provides most BMP biological activity in plasma

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d8880438e242">Bone morphogenetic protein 9 (BMP9) and BMP10 are the two high-affinity ligands for the endothelial receptor activin receptor-like kinase 1 (ALK1) and are key regulators of vascular remodeling. They are both present in the blood, but their respective biological activities are still a matter of debate. The aim of the present work was to characterize their circulating forms to better understand how their activities are regulated <i>in vivo</i>. First, by cotransfecting BMP9 and BMP10, we found that both can form a disulfide-bonded heterodimer <i>in vitro</i> and that this heterodimer is functional on endothelial cells via ALK1. Next, we developed an ELISA that could specifically recognize the BMP9–BMP10 heterodimer and which indicated its presence in both human and mouse plasma. In addition to using available <i>Bmp9</i>-KO mice, we generated a conditional <i>Bmp10</i>-KO mouse strain. The plasma from <i>Bmp10</i>-KO mice, similarly to that of <i>Bmp9</i>-KO mice, completely lacked the ability to activate ALK1-transfected 3T3 cells or phospho-Smad1–5 on endothelial cells, indicating that the circulating BMP activity is mostly due to the BMP9–BMP10 heterodimeric form. This result was confirmed in human plasma that had undergone affinity chromatography to remove BMP9 homodimer. Finally, we provide evidence that hepatic stellate cells in the liver could be the source of the BMP9–BMP10 heterodimer. Together, our findings demonstrate that BMP9 and BMP10 can heterodimerize and that this heterodimer is responsible for most of the biological BMP activity found in plasma. </p>

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Latent TGF-β structure and activation.

          Transforming growth factor (TGF)-β is stored in the extracellular matrix as a latent complex with its prodomain. Activation of TGF-β1 requires the binding of α(v) integrin to an RGD sequence in the prodomain and exertion of force on this domain, which is held in the extracellular matrix by latent TGF-β binding proteins. Crystals of dimeric porcine proTGF-β1 reveal a ring-shaped complex, a novel fold for the prodomain, and show how the prodomain shields the growth factor from recognition by receptors and alters its conformation. Complex formation between α(v)β(6) integrin and the prodomain is insufficient for TGF-β1 release. Force-dependent activation requires unfastening of a 'straitjacket' that encircles each growth-factor monomer at a position that can be locked by a disulphide bond. Sequences of all 33 TGF-β family members indicate a similar prodomain fold. The structure provides insights into the regulation of a family of growth and differentiation factors of fundamental importance in morphogenesis and homeostasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells.

            ALK1 is an endothelial-specific type I receptor of the TGFbeta receptor family whose heterozygous mutations cause hereditary hemorrhagic telangiectasia type 2. Although TGFbeta1 and TGFbeta3 have been shown to bind ALK1 under specific experimental conditions, they may not represent the physiological ligands for this receptor. In the present study, we demonstrate that BMP9 induces the phosphorylation of Smad1/5/8 in microvascular endothelial cells, and this phosphorylation lasts over a period of 24 hours. BMP9 also activates the ID1 promoter-derived BMP response element (BRE) in a dose-dependent manner (EC50 = 45 +/- 27 pg/mL), and this activation is abolished by silencing ALK1 expression or addition of ALK1 extracellular domain. Overexpression of endoglin increases the BMP9 response, whereas silencing of both BMPRII and ActRIIA expressions completely abolishes it. BMP10, which is structurally close to BMP9, is also a potent ALK1 ligand. Finally, we demonstrate that BMP9 and BMP10 potently inhibit endothelial cell migration and growth, and stimulate endothelial expression of a panel of genes that was previously reported to be activated by the constitutively active form of ALK1. Taken together, our results suggest that BMP9 and BMP10 are two specific ALK1 ligands that may physiologically trigger the effects of ALK1 on angiogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structural Biology and Evolution of the TGF-β Family.

              We review the evolution and structure of members of the transforming growth factor β (TGF-β) family, antagonistic or agonistic modulators, and receptors that regulate TGF-β signaling in extracellular environments. The growth factor (GF) domain common to all family members and many of their antagonists evolved from a common cystine knot growth factor (CKGF) domain. The CKGF superfamily comprises six distinct families in primitive metazoans, including the TGF-β and Dan families. Compared with Wnt/Frizzled and Notch/Delta families that also specify body axes, cell fate, tissues, and other families that contain CKGF domains that evolved in parallel, the TGF-β family was the most fruitful in evolution. Complexes between the prodomains and GFs of the TGF-β family suggest a new paradigm for regulating GF release by conversion from closed- to open-arm procomplex conformations. Ternary complexes of the final step in extracellular signaling show how TGF-β GF dimers bind type I and type II receptors on the cell surface, and enable understanding of much of the specificity and promiscuity in extracellular signaling. However, structures suggest that when GFs bind repulsive guidance molecule (RGM) family coreceptors, type I receptors do not bind until reaching an intracellular, membrane-enveloped compartment, blurring the line between extra- and intracellular signaling. Modulator protein structures show how structurally diverse antagonists including follistatins, noggin, and members of the chordin family bind GFs to regulate signaling; complexes with the Dan family remain elusive. Much work is needed to understand how these molecular components assemble to form signaling hubs in extracellular environments in vivo.
                Bookmark

                Author and article information

                Journal
                Journal of Biological Chemistry
                J. Biol. Chem.
                American Society for Biochemistry & Molecular Biology (ASBMB)
                0021-9258
                1083-351X
                July 13 2018
                July 13 2018
                July 13 2018
                May 22 2018
                : 293
                : 28
                : 10963-10974
                Article
                10.1074/jbc.RA118.002968
                34d36031-9be7-47f2-8136-7201c04cbb2a
                © 2018
                History

                Comments

                Comment on this article