10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The pattern recognition receptors dectin-2, mincle, and FcRγ impact the dynamics of phagocytosis of Candida, Saccharomyces, Malassezia, and Mucor species

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Phagocytosis is a receptor-mediated process critical to innate immune clearance of pathogens. It proceeds in a regulated sequence of stages: (a) migration of phagocytes towards pathogens, (b) recognition of PAMPs and binding through PRRs, (c) engulfment and internalisation into phagosomes, (d) phagosome maturation, and (e) killing of pathogen or host cells. However, little is known about the role that individual receptors play in these discrete stages in the recognition of fungal cells. In a previous study, we found that dectin-2 deficiency impacted some but not all stages of macrophage-mediated phagocytosis of Candida glabrata. Because the C-type lectin receptor dectin-2 critically requires coupling to the FcRγ chain for signalling, we hypothesised that this coupling may be important for regulating phagocytosis of fungal cargo. We therefore examined how deficiency in FcRγ itself or two receptors to which it couples (dectin-2 and mincle) impacts phagocytosis of six fungal organisms representing three different fungal taxa. Our data show that deficiency in these proteins impairs murine bone marrow-derived macrophage migration, engulfment, and phagosome maturation, but not macrophage survival. Therefore, FcRγ engagement with selective C-type lectin receptors (CLRs) critically affects the spatio-temporal dynamics of fungal phagocytosis.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          The C-type lectin-like domain superfamily.

          The superfamily of proteins containing C-type lectin-like domains (CTLDs) is a large group of extracellular Metazoan proteins with diverse functions. The CTLD structure has a characteristic double-loop ('loop-in-a-loop') stabilized by two highly conserved disulfide bridges located at the bases of the loops, as well as a set of conserved hydrophobic and polar interactions. The second loop, called the long loop region, is structurally and evolutionarily flexible, and is involved in Ca2+-dependent carbohydrate binding and interaction with other ligands. This loop is completely absent in a subset of CTLDs, which we refer to as compact CTLDs; these include the Link/PTR domain and bacterial CTLDs. CTLD-containing proteins (CTLDcps) were originally classified into seven groups based on their overall domain structure. Analyses of the superfamily representation in several completely sequenced genomes have added 10 new groups to the classification, and shown that it is applicable only to vertebrate CTLDcps; despite the abundance of CTLDcps in the invertebrate genomes studied, the domain architectures of these proteins do not match those of the vertebrate groups. Ca2+-dependent carbohydrate binding is the most common CTLD function in vertebrates, and apparently the ancestral one, as suggested by the many humoral defense CTLDcps characterized in insects and other invertebrates. However, many CTLDs have evolved to specifically recognize protein, lipid and inorganic ligands, including the vertebrate clade-specific snake venoms, and fish antifreeze and bird egg-shell proteins. Recent studies highlight the functional versatility of this protein superfamily and the CTLD scaffold, and suggest further interesting discoveries have yet to be made.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17.

            The C-type lectin dectin-1 binds to yeast and signals through the kinase Syk and the adaptor CARD9 to induce production of interleukin 10 (IL-10) and IL-2 in dendritic cells (DCs). However, whether this pathway promotes full DC activation remains unclear. Here we show that dectin-1-Syk-CARD9 signaling induced DC maturation and the secretion of proinflammatory cytokines, including IL-6, tumor necrosis factor and IL-23, but little IL-12. Dectin-1-activated DCs 'instructed' the differentiation of CD4+ IL-17-producing effector T cells (T(H)-17 cells) in vitro, and a dectin-1 agonist acted as an adjuvant promoting the differentiation of T(H)-17 and T helper type 1 cells in vivo. Infection with Candida albicans induced CARD9-dependent T(H)-17 responses to the organism. Our data indicate that signaling through Syk and CARD9 can couple innate to adaptive immunity independently of Toll-like receptor signals and that CARD9 is required for the development of T(H)-17 responses to some pathogens.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An integrated model of the recognition of Candida albicans by the innate immune system.

              The innate immune response was once considered to be a limited set of responses that aimed to contain an infection by primitive 'ingest and kill' mechanisms, giving the host time to mount a specific humoral and cellular immune response. In the mid-1990s, however, the discovery of Toll-like receptors heralded a revolution in our understanding of how microorganisms are recognized by the innate immune system, and how this system is activated. Several major classes of pathogen-recognition receptors have now been described, each with specific abilities to recognize conserved bacterial structures. The challenge ahead is to understand the level of complexity that underlies the response that is triggered by pathogen recognition. In this Review, we use the fungal pathogen Candida albicans as a model for the complex interaction that exists between the host pattern-recognition systems and invading microbial pathogens.
                Bookmark

                Author and article information

                Contributors
                Role: Formal analysisRole: InvestigationRole: VisualizationRole: Writing – original draft
                Role: Investigation
                Role: Investigation
                Role: Investigation
                Role: Resources
                Role: Resources
                Role: ConceptualizationRole: Funding acquisitionRole: MethodologyRole: Project administrationRole: ResourcesRole: SupervisionRole: Writing – review & editing
                Role: ConceptualizationRole: Funding acquisitionRole: MethodologyRole: Project administrationRole: ResourcesRole: SupervisionRole: ValidationRole: Writing – review & editing
                Role: ConceptualizationRole: Funding acquisitionRole: MethodologyRole: Project administrationRole: ResourcesRole: SupervisionRole: ValidationRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                8 August 2019
                2019
                : 14
                : 8
                : e0220867
                Affiliations
                [1 ] Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
                [2 ] Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
                [3 ] Department of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
                University of Birmingham, UNITED KINGDOM
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                [¤a]

                Current address: Microbiology Programme, Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait

                [¤b]

                Current address: Centre for Virus Research, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom

                [¤c]

                Current address: School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom

                [¤d]

                Current address: Research Institute for Microbial Diseases, Osaka University, Osaka, Japan

                [¤e]

                Current address: Galvani Bioelectronics, Gunnels Wood Road, Stevenage, Herts, United Kingdom

                Author information
                http://orcid.org/0000-0002-4660-338X
                Article
                PONE-D-19-14383
                10.1371/journal.pone.0220867
                6687134
                31393930
                89f77121-9cd1-4c04-b764-12e25476135d
                © 2019 Haider et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 24 May 2019
                : 24 July 2019
                Page count
                Figures: 8, Tables: 0, Pages: 17
                Funding
                This work was supported by the MRC Centre for Medical Mycology (MR/N006364/1). NARG thanks The Wellcome Trust (080088, 086827, 075470, 099215, 097377, 101873/Z/13/Z, and 200208/A/15/Z) for support. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Cell Biology
                Cellular Structures and Organelles
                Vesicles
                Phagosomes
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Blood Cells
                White Blood Cells
                Macrophages
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Immune Cells
                White Blood Cells
                Macrophages
                Biology and Life Sciences
                Immunology
                Immune Cells
                White Blood Cells
                Macrophages
                Medicine and Health Sciences
                Immunology
                Immune Cells
                White Blood Cells
                Macrophages
                Biology and Life Sciences
                Cell Biology
                Cell Processes
                Phagocytosis
                Biology and Life Sciences
                Organisms
                Eukaryota
                Fungi
                Yeast
                Candida
                Candida Albicans
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Fungal Pathogens
                Candida Albicans
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Fungal Pathogens
                Candida Albicans
                Biology and Life Sciences
                Mycology
                Fungal Pathogens
                Candida Albicans
                Research and Analysis Methods
                Animal Studies
                Experimental Organism Systems
                Yeast and Fungal Models
                Candida Albicans
                Biology and Life Sciences
                Organisms
                Eukaryota
                Fungi
                Research and Analysis Methods
                Animal Studies
                Experimental Organism Systems
                Model Organisms
                Saccharomyces Cerevisiae
                Research and Analysis Methods
                Model Organisms
                Saccharomyces Cerevisiae
                Biology and Life Sciences
                Organisms
                Eukaryota
                Fungi
                Yeast
                Saccharomyces
                Saccharomyces Cerevisiae
                Research and Analysis Methods
                Animal Studies
                Experimental Organism Systems
                Yeast and Fungal Models
                Saccharomyces Cerevisiae
                Biology and Life Sciences
                Immunology
                Immune System Proteins
                Immune Receptors
                Pattern Recognition Receptors
                Medicine and Health Sciences
                Immunology
                Immune System Proteins
                Immune Receptors
                Pattern Recognition Receptors
                Biology and Life Sciences
                Biochemistry
                Proteins
                Immune System Proteins
                Immune Receptors
                Pattern Recognition Receptors
                Biology and Life Sciences
                Cell Biology
                Signal Transduction
                Immune Receptors
                Pattern Recognition Receptors
                Research and Analysis Methods
                Mathematical and Statistical Techniques
                Statistical Methods
                Analysis of Variance
                Physical Sciences
                Mathematics
                Statistics
                Statistical Methods
                Analysis of Variance
                Custom metadata
                All relevant data are within the manuscript and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article