9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Volume-sensitive outwardly rectifying chloride channel blockers protect against high glucose-induced apoptosis of cardiomyocytes via autophagy activation

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hyperglycemia is a well-characterized contributing factor for cardiac dysfunction and heart failure among diabetic patients. Apoptosis of cardiomyocytes plays a major role during the onset and pathogenesis of diabetic cardiomyopathy (DCM). Nonetheless, the molecular machinery underlying hyperglycemia-induced cardiac damage and cell death remains elusive. In the present study, we found that chloride channel blockers, 4,4′-diisothiocya-natostilbene-2,2′- disulfonic acid (DIDS) and 4-(2-butyl-6,7-dichlor-2-cyclopentyl-indan-1-on-5-yl) oxybutyric acid (DCPIB), inhibited high glucose-activated volume-sensitive outwardly rectifying (VSOR) Cl channel and improved the viability of cardiomyocytes. High glucose induced cardiomyocyte apoptosis by suppressing the autophagic stress, which can be reversed via blockade of VSOR Cl channel. VSOR activation in high glucose-treated cardiomyocytes was attributed to increased intracellular levels of reactive oxygen species (ROS). Taken together, our study unraveled a role of VSOR chloride currents in impaired autophagy and increased apoptosis of high glucose-exposed cardiomyocyte, and has implications for a therapeutic potential of VSOR chloride channel blockers in DCM.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          LC3 conjugation system in mammalian autophagy

          Autophagy is the bulk degradation of proteins and organelles, a process essential for cellular maintenance, cell viability, differentiation and development in mammals. Autophagy has significant associations with neurodegenerative diseases, cardiomyopathies, cancer, programmed cell death, and bacterial and viral infections. During autophagy, a cup-shaped structure, the preautophagosome, engulfs cytosolic components, including organelles, and closes, forming an autophagosome, which subsequently fuses with a lysosome, leading to the proteolytic degradation of internal components of the autophagosome by lysosomal lytic enzymes. During the formation of mammalian autophagosomes, two ubiquitylation-like modifications are required, Atg12-conjugation and LC3-modification. LC3 is an autophagosomal ortholog of yeast Atg8. A lipidated form of LC3, LC3-II, has been shown to be an autophagosomal marker in mammals, and has been used to study autophagy in neurodegenerative and neuromuscular diseases, tumorigenesis, and bacterial and viral infections. The other Atg8 homologues, GABARAP and GATE-16, are also modified by the same mechanism. In non-starved rats, the tissue distribution of LC3-II differs from those of the lipidated forms of GABARAP and GATE-16, GABARAP-II and GATE-16-II, suggesting that there is a functional divergence among these three modified proteins. Delipidation of LC3-II and GABARAP-II is mediated by hAtg4B. We review the molecular mechanism of LC3-modification, the crosstalk between LC3-modification and mammalian Atg12-conjugation, and the cycle of LC3-lipidation and delipidation mediated by hAtg4B, as well as recent findings concerning the other two Atg8 homologues, GABARAP and GATE-16. We also highlight recent findings regarding the pathobiology of LC3-modification, including its role in microbial infection, cancer and neuromuscular diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            How to interpret LC3 immunoblotting.

            Microtubule-associated protein light chain 3 (LC3) is now widely used to monitor autophagy. One approach is to detect LC3 conversion (LC3-I to LC3-II) by immunoblot analysis because the amount of LC3-II is clearly correlated with the number of autophagosomes. However, LC3-II itself is degraded by autophagy, making interpretation of the results of LC3 immunoblotting problematic. Furthermore, the amount of LC3 at a certain time point does not indicate autophagic flux, and therefore, it is important to measure the amount of LC3-II delivered to lysosomes by comparing LC3-II levels in the presence and absence of lysosomal protease inhibitors. Another problem with this method is that LC3-II tends to be much more sensitive to be detected by immunoblotting than LC3-I. Accordingly, simple comparison of LC3-I and LC3-II, or summation of LC3-I and LC3-II for ratio determinations, may not be appropriate, and rather, the amount of LC3-II can be compared between samples.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Cell death.

                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                16 March 2017
                2017
                : 7
                : 44265
                Affiliations
                [1 ]Department of Geriatrics, Xijing Hospital, Fourth Military Medical University , Xi’an 710032, China
                [2 ]Department of Cardiology, Hainan Branch of PLA General Hospital , Sanya 572031, China
                [3 ]Department of Biochemistry and Molecular Biology, Fourth Military Medical University , Xi’an 710032, China
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep44265
                10.1038/srep44265
                5353972
                28300155
                9f409668-910f-45cc-a47d-46b911ef7f42
                Copyright © 2017, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 09 August 2016
                : 07 February 2017
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article