6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Derivation, validation and assessment of a novel nomogram-based risk assessment model for venous thromboembolism in hospitalized patients with lung cancer: A retrospective case control study

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          This study aimed to develop and validate a specific risk-stratification nomogram model for the prediction of venous thromboembolism(VTE) in hospitalized patients with lung cancer using readily obtainable demographic, clinical and therapeutic characteristics, thus guiding the individualized decision-making on thromboprophylaxis on the basis of VTE risk levels.

          Methods

          We performed a retrospective case–control study among newly diagnosed lung cancer patients hospitalized between January 2016 and December 2021. Included in the cohort were 234 patients who developed PTE and 936 non-VTE patients. The patients were randomly divided into the derivation group (70%, 165 VTE patients and 654 non-VTE patients) and the validation group (30%, 69 VTE patients and 282 non-VTE patients). Cut off values were established using a Youden´s Index. Univariate and multivariate regression analyses were used to determine independent risk factors associated with VTE. Variance Inflation Factor(VIF) was used for collinearity diagnosis of the covariates in the model. The model was validated by the consistency index (C-index), receiver operating characteristic curves(ROC) and the calibration plot with the Hosmer-Lemeshow goodness-of-fit test. The clinical utility of the model was assessed through decision curve analysis(DCA). Further, the comparison of nomogram model with current models(Khorana, Caprini, Padua and COMPASS-CAT) was performed by comparing ROC curves using the DeLong’s test.

          Results

          The predictive nomogram modle comprised eleven variables: overweight(24-28) defined by body mass index (BMI): [odds ratio (OR): 1.90, 95% confidence interval (CI): 1.19-3.07], adenocarcinoma(OR:3.00, 95% CI: 1.88-4.87), stageIII-IV(OR:2.75, 95%CI: 1.58-4.96), Central venous catheters(CVCs) (OR:4.64, 95%CI: 2.86-7.62), D-dimer levels≥2.06mg/L(OR:5.58, 95%CI:3.54-8.94), PT levels≥11.45sec(OR:2.15, 95% CI:1.32-3.54), Fbg levels≥3.33 g/L(OR:1.76, 95%CI:1.12-2.78), TG levels≥1.37mmol/L (OR:1.88, 95%CI:1.19-2.99), ROS1 rearrangement(OR:2.87, 95%CI:1.74-4.75), chemotherapy history(OR:1.66, 95%CI:1.01-2.70) and radiotherapy history(OR:1.96, 95%CI:1.17-3.29). Collinearity analysis with demonstrated no collinearity among the variables. The resulting model showed good predictive performance in the derivation group (AUC 0.865, 95% CI: 0.832-0.897) and in the validation group(AUC 0.904,95%CI:0.869-0.939). The calibration curve and DCA showed that the risk-stratification nomogram had good consistency and clinical utility. Futher, the area under the ROC curve for the specific VTE risk-stratification nomogram model (0.904; 95% CI:0.869-0.939) was significantly higher than those of the KRS, Caprini, Padua and COMPASS-CAT models(Z=12.087, 11.851, 9.442, 5.340, all P<0.001, respectively).

          Conclusion

          A high-performance nomogram model incorporated available clinical parameters, genetic and therapeutic factors was established, which can accurately predict the risk of VTE in hospitalized patients with lung cancer and to guide individualized decision-making on thromboprophylaxis. Notably, the novel nomogram model was significantly more effective than the existing well-accepted models in routine clinical practice in stratifying the risk of VTE in those patients. Future community-based prospective studies and studies from multiple clinical centers are required for external validation.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Decision curve analysis: a novel method for evaluating prediction models.

          Diagnostic and prognostic models are typically evaluated with measures of accuracy that do not address clinical consequences. Decision-analytic techniques allow assessment of clinical outcomes but often require collection of additional information and may be cumbersome to apply to models that yield a continuous result. The authors sought a method for evaluating and comparing prediction models that incorporates clinical consequences,requires only the data set on which the models are tested,and can be applied to models that have either continuous or dichotomous results. The authors describe decision curve analysis, a simple, novel method of evaluating predictive models. They start by assuming that the threshold probability of a disease or event at which a patient would opt for treatment is informative of how the patient weighs the relative harms of a false-positive and a false-negative prediction. This theoretical relationship is then used to derive the net benefit of the model across different threshold probabilities. Plotting net benefit against threshold probability yields the "decision curve." The authors apply the method to models for the prediction of seminal vesicle invasion in prostate cancer patients. Decision curve analysis identified the range of threshold probabilities in which a model was of value, the magnitude of benefit, and which of several models was optimal. Decision curve analysis is a suitable method for evaluating alternative diagnostic and prognostic strategies that has advantages over other commonly used measures and techniques.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nomograms in oncology: more than meets the eye.

            Nomograms are widely used as prognostic devices in oncology and medicine. With the ability to generate an individual probability of a clinical event by integrating diverse prognostic and determinant variables, nomograms meet our desire for biologically and clinically integrated models and fulfill our drive towards personalised medicine. Rapid computation through user-friendly digital interfaces, together with increased accuracy, and more easily understood prognoses compared with conventional staging, allow for seamless incorporation of nomogram-derived prognosis to aid clinical decision making. This has led to the appearance of many nomograms on the internet and in medical journals, and an increase in nomogram use by patients and physicians alike. However, the statistical foundations of nomogram construction, their precise interpretation, and evidence supporting their use are generally misunderstood. This issue is leading to an under-appreciation of the inherent uncertainties regarding nomogram use. We provide a systematic, practical approach to evaluating and comprehending nomogram-derived prognoses, with particular emphasis on clarifying common misconceptions and highlighting limitations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              PROBAST: A Tool to Assess the Risk of Bias and Applicability of Prediction Model Studies

              Clinical prediction models combine multiple predictors to estimate risk for the presence of a particular condition (diagnostic models) or the occurrence of a certain event in the future (prognostic models). PROBAST (Prediction model Risk Of Bias ASsessment Tool), a tool for assessing the risk of bias (ROB) and applicability of diagnostic and prognostic prediction model studies, was developed by a steering group that considered existing ROB tools and reporting guidelines. The tool was informed by a Delphi procedure involving 38 experts and was refined through piloting. PROBAST is organized into the following 4 domains: participants, predictors, outcome, and analysis. These domains contain a total of 20 signaling questions to facilitate structured judgment of ROB, which was defined to occur when shortcomings in study design, conduct, or analysis lead to systematically distorted estimates of model predictive performance. PROBAST enables a focused and transparent approach to assessing the ROB and applicability of studies that develop, validate, or update prediction models for individualized predictions. Although PROBAST was designed for systematic reviews, it can be used more generally in critical appraisal of prediction model studies. Potential users include organizations supporting decision making, researchers and clinicians who are interested in evidence-based medicine or involved in guideline development, journal editors, and manuscript reviewers.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Oncol
                Front Oncol
                Front. Oncol.
                Frontiers in Oncology
                Frontiers Media S.A.
                2234-943X
                10 October 2022
                2022
                : 12
                : 988287
                Affiliations
                [1] Department of Respiratory and Neurology, The Affiliated Tumor Hospital of Xinjiang Medical University , Urumqi, China
                Author notes

                Edited by: Canan G. Nebigil, INSERM U1260 Nanomedicine régénératrice (RNM), France

                Reviewed by: Yusuf Ziya Şener, Hacettepe University, Turkey; Gregory Peterson, University of Tasmania, Australia

                *Correspondence: Qin Luo, luoqin07052022@ 123456126.com

                This article was submitted to Cardio-Oncology, a section of the journal Frontiers in Oncology

                Article
                10.3389/fonc.2022.988287
                9589115
                36300098
                88611f88-d230-4eb9-9bf3-0096d0c8a9c5
                Copyright © 2022 Li, Tian, Niu, He, Cao, Zhang, Kaiweisierkezi and Luo

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 07 July 2022
                : 27 September 2022
                Page count
                Figures: 6, Tables: 2, Equations: 0, References: 53, Pages: 17, Words: 8827
                Funding
                Funded by: National Natural Science Foundation of China , doi 10.13039/501100001809;
                Award ID: 81760014
                Categories
                Oncology
                Original Research

                Oncology & Radiotherapy
                lung cancer,venous thromboembolism,risk assessment,nomogram model,thromboprophylaxis

                Comments

                Comment on this article