20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      CRISPR/Cas9-mediated genome editing in a reef-building coral

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p id="d1857444e225">Coral reefs are biodiversity hotspots of great ecological, economic, and aesthetic importance. Their global decline due to climate change and other anthropogenic stressors has increased the urgency to understand the molecular bases of various aspects of coral biology, including the interactions with algal symbionts and responses to stress. Recent genomic and transcriptomic studies have yielded many hypotheses about genes that may be important in such processes, but rigorous testing of these hypotheses will require the generation of mutations affecting these genes. Here, we demonstrate the efficient production of mutations in three target genes using the recently developed CRISPR/Cas9 gene-editing technique. By clarifying aspects of basic coral biology, such genetic approaches should also provide a more solid foundation for coral-conservation efforts. </p><p class="first" id="d1857444e228">Reef-building corals are critically important species that are threatened by anthropogenic stresses including climate change. In attempts to understand corals’ responses to stress and other aspects of their biology, numerous genomic and transcriptomic studies have been performed, generating a variety of hypotheses about the roles of particular genes and molecular pathways. However, it has not generally been possible to test these hypotheses rigorously because of the lack of genetic tools for corals. Here, we demonstrate efficient genome editing using the CRISPR/Cas9 system in the coral <i>Acropora millepora</i>. We targeted the genes encoding fibroblast growth factor 1a ( <i>FGF1a</i>), green fluorescent protein ( <i>GFP</i>), and red fluorescent protein ( <i>RFP</i>). After microinjecting CRISPR/Cas9 ribonucleoprotein complexes into fertilized eggs, we detected induced mutations in the targeted genes using changes in restriction-fragment length, Sanger sequencing, and high-throughput Illumina sequencing. We observed mutations in ∼50% of individuals screened, and the proportions of wild-type and various mutant gene copies in these individuals indicated that mutation induction continued for at least several cell cycles after injection. Although multiple paralogous genes encoding green fluorescent proteins are present in <i>A. millepora</i>, appropriate design of the guide RNA allowed us to induce mutations simultaneously in more than one paralog. Because <i>A. millepora</i> larvae can be induced to settle and begin colony formation in the laboratory, CRISPR/Cas9-based gene editing should allow rigorous tests of gene function in both larval and adult corals. </p>

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Efficient In Vivo Genome Editing Using RNA-Guided Nucleases

          Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems have evolved in bacteria and archaea as a defense mechanism to silence foreign nucleic acids of viruses and plasmids. Recent work has shown that bacterial type II CRISPR systems can be adapted to create guide RNAs (gRNAs) capable of directing site-specific DNA cleavage by the Cas9 nuclease in vitro. Here we show that this system can function in vivo to induce targeted genetic modifications in zebrafish embryos with efficiencies comparable to those obtained using ZFNs and TALENs for the same genes. RNA-guided nucleases robustly enabled genome editing at 9 of 11 different sites tested, including two for which TALENs previously failed to induce alterations. These results demonstrate that programmable CRISPR/Cas systems provide a simple, rapid, and highly scalable method for altering genes in vivo, opening the door to using RNA-guided nucleases for genome editing in a wide range of organisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system.

            A simple and robust method for targeted mutagenesis in zebrafish has long been sought. Previous methods generate monoallelic mutations in the germ line of F0 animals, usually delaying homozygosity for the mutation to the F2 generation. Generation of robust biallelic mutations in the F0 would allow for phenotypic analysis directly in injected animals. Recently the type II prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) system has been adapted to serve as a targeted genome mutagenesis tool. Here we report an improved CRISPR/Cas system in zebrafish with custom guide RNAs and a zebrafish codon-optimized Cas9 protein that efficiently targeted a reporter transgene Tg(-5.1mnx1:egfp) and four endogenous loci (tyr, golden, mitfa, and ddx19). Mutagenesis rates reached 75-99%, indicating that most cells contained biallelic mutations. Recessive null-like phenotypes were observed in four of the five targeting cases, supporting high rates of biallelic gene disruption. We also observed efficient germ-line transmission of the Cas9-induced mutations. Finally, five genomic loci can be targeted simultaneously, resulting in multiple loss-of-function phenotypes in the same injected fish. This CRISPR/Cas9 system represents a highly effective and scalable gene knockout method in zebrafish and has the potential for applications in other model organisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Using the Acropora digitifera genome to understand coral responses to environmental change.

              Despite the enormous ecological and economic importance of coral reefs, the keystone organisms in their establishment, the scleractinian corals, increasingly face a range of anthropogenic challenges including ocean acidification and seawater temperature rise. To understand better the molecular mechanisms underlying coral biology, here we decoded the approximately 420-megabase genome of Acropora digitifera using next-generation sequencing technology. This genome contains approximately 23,700 gene models. Molecular phylogenetics indicate that the coral and the sea anemone Nematostella vectensis diverged approximately 500 million years ago, considerably earlier than the time over which modern corals are represented in the fossil record (∼240 million years ago). Despite the long evolutionary history of the endosymbiosis, no evidence was found for horizontal transfer of genes from symbiont to host. However, unlike several other corals, Acropora seems to lack an enzyme essential for cysteine biosynthesis, implying dependency of this coral on its symbionts for this amino acid. Corals inhabit environments where they are frequently exposed to high levels of solar radiation, and analysis of the Acropora genome data indicates that the coral host can independently carry out de novo synthesis of mycosporine-like amino acids, which are potent ultraviolet-protective compounds. In addition, the coral innate immunity repertoire is notably more complex than that of the sea anemone, indicating that some of these genes may have roles in symbiosis or coloniality. A number of genes with putative roles in calcification were identified, and several of these are restricted to corals. The coral genome provides a platform for understanding the molecular basis of symbiosis and responses to environmental changes.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                April 25 2018
                : 201722151
                Article
                10.1073/pnas.1722151115
                652d1e81-5589-4a44-bdf9-51f53840f402
                © 2018

                Free to read

                http://www.pnas.org/site/misc/userlicense.xhtml

                History

                Comments

                Comment on this article