61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      What Is Citizen Science? – A Scientometric Meta-Analysis

      ,
      PLOS ONE
      Public Library of Science (PLoS)

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Context The concept of citizen science (CS) is currently referred to by many actors inside and outside science and research. Several descriptions of this purportedly new approach of science are often heard in connection with large datasets and the possibilities of mobilizing crowds outside science to assists with observations and classifications. However, other accounts refer to CS as a way of democratizing science, aiding concerned communities in creating data to influence policy and as a way of promoting political decision processes involving environment and health. Objective In this study we analyse two datasets (N = 1935, N = 633) retrieved from the Web of Science (WoS) with the aim of giving a scientometric description of what the concept of CS entails. We account for its development over time, and what strands of research that has adopted CS and give an assessment of what scientific output has been achieved in CS-related projects. To attain this, scientometric methods have been combined with qualitative approaches to render more precise search terms. Results Results indicate that there are three main focal points of CS. The largest is composed of research on biology, conservation and ecology, and utilizes CS mainly as a methodology of collecting and classifying data. A second strand of research has emerged through geographic information research, where citizens participate in the collection of geographic data. Thirdly, there is a line of research relating to the social sciences and epidemiology, which studies and facilitates public participation in relation to environmental issues and health. In terms of scientific output, the largest body of articles are to be found in biology and conservation research. In absolute numbers, the amount of publications generated by CS is low (N = 1935), but over the past decade a new and very productive line of CS based on digital platforms has emerged for the collection and classification of data.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Software survey: VOSviewer, a computer program for bibliometric mapping

          We present VOSviewer, a freely available computer program that we have developed for constructing and viewing bibliometric maps. Unlike most computer programs that are used for bibliometric mapping, VOSviewer pays special attention to the graphical representation of bibliometric maps. The functionality of VOSviewer is especially useful for displaying large bibliometric maps in an easy-to-interpret way. The paper consists of three parts. In the first part, an overview of VOSviewer’s functionality for displaying bibliometric maps is provided. In the second part, the technical implementation of specific parts of the program is discussed. Finally, in the third part, VOSviewer’s ability to handle large maps is demonstrated by using the program to construct and display a co-citation map of 5,000 major scientific journals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fast unfolding of communities in large networks

            Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization Designed for the Gephi Software

              Gephi is a network visualization software used in various disciplines (social network analysis, biology, genomics…). One of its key features is the ability to display the spatialization process, aiming at transforming the network into a map, and ForceAtlas2 is its default layout algorithm. The latter is developed by the Gephi team as an all-around solution to Gephi users’ typical networks (scale-free, 10 to 10,000 nodes). We present here for the first time its functioning and settings. ForceAtlas2 is a force-directed layout close to other algorithms used for network spatialization. We do not claim a theoretical advance but an attempt to integrate different techniques such as the Barnes Hut simulation, degree-dependent repulsive force, and local and global adaptive temperatures. It is designed for the Gephi user experience (it is a continuous algorithm), and we explain which constraints it implies. The algorithm benefits from much feedback and is developed in order to provide many possibilities through its settings. We lay out its complete functioning for the users who need a precise understanding of its behaviour, from the formulas to graphic illustration of the result. We propose a benchmark for our compromise between performance and quality. We also explain why we integrated its various features and discuss our design choices.
                Bookmark

                Author and article information

                Journal
                PLOS ONE
                PLoS ONE
                Public Library of Science (PLoS)
                1932-6203
                January 14 2016
                January 14 2016
                : 11
                : 1
                : e0147152
                Article
                10.1371/journal.pone.0147152
                2a2fdfbe-c27c-4841-a23f-775977a3a442
                © 2016

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article