18
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Google Earth Engine based spatio-temporal analysis of air pollutants before and during the first wave COVID-19 outbreak over Turkey via remote sensing

      , ,
      Journal of Cleaner Production
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d10904384e140">Air pollution is one of the vital problems for the sustainability of cities and public health. The lockdown caused by the COVID-19 outbreak has become a natural laboratory, enabling to investigate the impact of human/industrial activities on the air pollution. In this study, we investigated the spatio-temporal density of TROPOMI-based nitrogen dioxide (NO <sub>2</sub>) and sulfur dioxide (SO <sub>2</sub>) products, and MODIS-derived Aerosol Optical Depth (AOD) from January 2019 to September 2020 (also covering the first wave of the COVID-19) over Turkey using Google Earth Engine (GEE). The results showed a significant decrease in NO <sub>2</sub> and AOD, while SO <sub>2</sub> unchanged and had slightly higher concentrations in some regions during the lockdown compared to 2019. The relationship between air pollutants and meteorological parameters during the lockdown showed that air temperature and pressure were highly correlated with air pollutants, unlike precipitation and wind speed. Moreover, Purchasing Managers' Index (PMI) data, indicator of economic/industrial activities, also provided poor correlation with air pollutants. TROPOMI-based NO <sub>2</sub> and SO <sub>2</sub> were compared with station-based pollutants for three sites (suburban, urban, and urban-traffic classes) in Istanbul, revealing 0.83, 0.70 and 0.65 correlation coefficients for NO <sub>2</sub>, respectively, while SO <sub>2</sub> showed no significant correlation. Besides, AOD data were validated using two AERONET sites providing 0.86 and 0.82 correlation coefficients. Overall, the satellite-based data provided significant outcomes for the spatio-temporal evaluation of air quality, especially during the first wave of the COVID-19 lockdown. </p>

          Related collections

          Most cited references77

          • Record: found
          • Abstract: not found
          • Article: not found

          TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic

            Lockdown measures came into force in Spain from March 14th, two weeks after the start of the SARS-CoV-2 epidemic, to reduce the epidemic curve. Our study aims to describe changes in air pollution levels during the lockdown measures in the city of Barcelona (NE Spain), by studying the time evolution of atmospheric pollutants recorded at the urban background and traffic air quality monitoring stations. After two weeks of lockdown, urban air pollution markedly decreased but with substantial differences among pollutants. The most significant reduction was estimated for BC and NO2 (−45 to −51%), pollutants mainly related to traffic emissions. A lower reduction was observed for PM10 (−28 to −31.0%). By contrast, O3 levels increased (+33 to +57% of the 8 h daily maxima), probably due to lower titration of O3 by NO and the decrease of NOx in a VOC-limited environment. Relevant differences in the meteorology of these two periods were also evidenced. The low reduction for PM10 is probably related to a significant regional contribution and the prevailing secondary origin of fine aerosols, but an in-depth evaluation has to be carried out to interpret this lower decrease. There is no defined trend for the low SO2 levels, probably due to the preferential reduction in emissions from the least polluting ships. A reduction of most pollutants to minimal concentrations are expected for the forthcoming weeks because of the more restrictive actions implemented for a total lockdown, which entered into force on March 30th. There are still open questions on why PM10 levels were much less reduced than BC and NO2 and on what is the proportion of the abatement of pollution directly related to the lockdown, without meteorological interferences.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Assessing nitrogen dioxide (NO 2 ) levels as a contributing factor to the coronavirus (COVID-19) fatality rate

              Yaron Ogen (2020)
              Nitrogen dioxide (NO2) is an ambient trace-gas as a result of both natural and anthropogenic processes. Long-term exposure to NO2 may cause a wide spectrum of severe health problems such as hypertension, diabetes, heart and cardiovascular diseases and even death. The objective of this study is to examine the relationship between long-term exposure to NO2 and fatality caused by the coronavirus. The Sentinel-5P is used for mapping the tropospheric NO2 distribution and the NCEP/NCAR reanalysis for evaluating the atmospheric capability to disperse the pollution. The spatial analysis has been conducted on a regional scale and combined with the number of death cases taken from 66 administrative regions in Italy, Spain, France and Germany. Results show that out of the 4443 fatality cases, 3487 (78%) were in five regions located in north Italy and central Spain. Additionally, the same five regions show the highest NO2 concentrations combined with downwards airflow which prevent an efficient dispersion of air pollution. These results indicate that the long-term exposure to this pollutant may be one of the most important contributors to fatality caused by the COVID-19 in these regions and maybe across the whole world.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Journal of Cleaner Production
                Journal of Cleaner Production
                Elsevier BV
                09596526
                October 2021
                October 2021
                : 319
                : 128599
                Article
                10.1016/j.jclepro.2021.128599
                e9c8a1c0-6614-47e3-a2f8-0f801ef8762c
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article