1,391
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Atomically thin MoS2: A new direct-gap semiconductor

      Preprint

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The electronic properties of ultrathin crystals of molybdenum disulfide consisting of N = 1, 2, ... 6 S-Mo-S monolayers have been investigated by optical spectroscopy. Through characterization by absorption, photoluminescence, and photoconductivity spectroscopy, we trace the effect of quantum confinement on the material's electronic structure. With decreasing thickness, the indirect band gap, which lies below the direct gap in the bulk material, shifts upwards in energy by more than 0.6 eV. This leads to a crossover to a direct-gap material in the limit of the single monolayer. Unlike the bulk material, the MoS2 monolayer emits light strongly. The freestanding monolayer exhibits an increase in luminescence quantum efficiency by more than a factor of 1000 compared with the bulk material.

          Related collections

          Most cited references3

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Graphene: Status and Prospects

          A. K. Geim (2010)
          Graphene is a wonder material with many superlatives to its name. It is the thinnest material in the universe and the strongest ever measured. Its charge carriers exhibit giant intrinsic mobility, have the smallest effective mass (it is zero) and can travel micrometer-long distances without scattering at room temperature. Graphene can sustain current densities 6 orders higher than copper, shows record thermal conductivity and stiffness, is impermeable to gases and reconciles such conflicting qualities as brittleness and ductility. Electron transport in graphene is described by a Dirac-like equation, which allows the investigation of relativistic quantum phenomena in a bench-top experiment. What are other surprises that graphene keeps in store for us? This review analyses recent trends in graphene research and applications, and attempts to identify future directions in which the field is likely to develop.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Measurement of the Optical Conductivity of Graphene

            Optical reflectivity and transmission measurements over photon energies between 0.2 and 1.2 eV were performed on single-crystal graphene samples on a transparent SiO2 substrate. For photon energies above 0.5 eV, graphene yielded a spectrally flat optical absorbance of (2.3 +/- 0.2)%. This result is in agreement with a constant absorbance of pi*alpha, or a sheet conductivity of pi*e^2/2h, predicted within a model of non-interacting massless Dirac Fermions. This simple result breaks down at lower photon energies, where both spectral and sample-to-sample variations were observed. This "non-universal" behavior is explained by including the effects of doping and finite temperature, as well as contributions from intraband transitions.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Splitting of the quantum Hall transition in disordered graphenes

                Bookmark

                Author and article information

                Journal
                10.1103/PhysRevLett.105.136805
                1004.0546

                Condensed matter,Nanophysics
                Condensed matter, Nanophysics

                Comments

                Comment on this article