3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Food-derived biopolymer kefiran composites, nanocomposites and nanofibers: Emerging alternatives to food packaging and potentials in nanomedicine

      ,
      Trends in Food Science & Technology
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references148

          • Record: found
          • Abstract: found
          • Article: not found

          Essential oils: their antibacterial properties and potential applications in foods--a review.

          In vitro studies have demonstrated antibacterial activity of essential oils (EOs) against Listeria monocytogenes, Salmonella typhimurium, Escherichia coli O157:H7, Shigella dysenteria, Bacillus cereus and Staphylococcus aureus at levels between 0.2 and 10 microl ml(-1). Gram-negative organisms are slightly less susceptible than gram-positive bacteria. A number of EO components has been identified as effective antibacterials, e.g. carvacrol, thymol, eugenol, perillaldehyde, cinnamaldehyde and cinnamic acid, having minimum inhibitory concentrations (MICs) of 0.05-5 microl ml(-1) in vitro. A higher concentration is needed to achieve the same effect in foods. Studies with fresh meat, meat products, fish, milk, dairy products, vegetables, fruit and cooked rice have shown that the concentration needed to achieve a significant antibacterial effect is around 0.5-20 microl g(-1) in foods and about 0.1-10 microl ml(-1) in solutions for washing fruit and vegetables. EOs comprise a large number of components and it is likely that their mode of action involves several targets in the bacterial cell. The hydrophobicity of EOs enables them to partition in the lipids of the cell membrane and mitochondria, rendering them permeable and leading to leakage of cell contents. Physical conditions that improve the action of EOs are low pH, low temperature and low oxygen levels. Synergism has been observed between carvacrol and its precursor p-cymene and between cinnamaldehyde and eugenol. Synergy between EO components and mild preservation methods has also been observed. Some EO components are legally registered flavourings in the EU and the USA. Undesirable organoleptic effects can be limited by careful selection of EOs according to the type of food.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Nanomaterials and nanoparticles: Sources and toxicity

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanism of antibacterial activity of copper nanoparticles.

              In a previous communication, we reported a new method of synthesis of stable metallic copper nanoparticles (Cu-NPs), which had high potency for bacterial cell filamentation and cell killing. The present study deals with the mechanism of filament formation and antibacterial roles of Cu-NPs in E. coli cells. Our results demonstrate that NP-mediated dissipation of cell membrane potential was the probable reason for the formation of cell filaments. On the other hand, Cu-NPs were found to cause multiple toxic effects such as generation of reactive oxygen species, lipid peroxidation, protein oxidation and DNA degradation in E. coli cells. In vitro interaction between plasmid pUC19 DNA and Cu-NPs showed that the degradation of DNA was highly inhibited in the presence of the divalent metal ion chelator EDTA, which indicated a positive role of Cu(2+) ions in the degradation process. Moreover, the fast destabilization, i.e. the reduction in size, of NPs in the presence of EDTA led us to propose that the nascent Cu ions liberated from the NP surface were responsible for higher reactivity of the Cu-NPs than the equivalent amount of its precursor CuCl2; the nascent ions were generated from the oxidation of metallic NPs when they were in the vicinity of agents, namely cells, biomolecules or medium components, to be reduced simultaneously.
                Bookmark

                Author and article information

                Journal
                Trends in Food Science & Technology
                Trends in Food Science & Technology
                Elsevier BV
                09242244
                October 2021
                October 2021
                : 116
                : 370-386
                Article
                10.1016/j.tifs.2021.07.038
                c64c738c-1891-43b7-82b4-5a44f162a4ec
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article