121
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Atopic dermatitis.

      Lancet
      Administration, Topical, Adult, Anti-Bacterial Agents, therapeutic use, Anti-Inflammatory Agents, Child, Dermatitis, Atopic, diagnosis, drug therapy, physiopathology, Diagnosis, Differential, Food Hypersensitivity, Glucocorticoids, Humans, Prevalence

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Atopic dermatitis is a highly pruritic chronic inflammatory skin disorder affecting 10-20% of children worldwide. Symptoms can persist or begin in adulthood. It is also the most common cause of occupational skin disease in adults. This disease results from an interaction between susceptibility genes, the host's environment, pharmacological abnormalities, skin barrier defects, and immunological factors. New management approaches have evolved from advances in our understanding of the pathobiology of this common skin disorder.

          Related collections

          Most cited references98

          • Record: found
          • Abstract: found
          • Article: not found

          Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP.

          Whether epithelial cells play a role in triggering the immune cascade leading to T helper 2 (T(H)2)-type allergic inflammation is not known. We show here that human thymic stromal lymphopoietin (TSLP) potently activated CD11c(+) dendritic cells (DCs) and induced production of the T(H)2-attracting chemokines TARC (thymus and activation-regulated chemokine; also known as CCL17) and MDC (macrophage-derived chemokine; CCL22). TSLP-activated DCs primed naïve T(H) cells to produce the proallergic cytokines interleukin 4 (IL-4), IL-5, IL-13 and tumor necrosis factor-alpha, while down-regulating IL-10 and interferon-gamma. TSLP was highly expressed by epithelial cells, especially keratinocytes from patients with atopic dermatitis. TSLP expression was associated with Langerhans cell migration and activation in situ. These findings shed new light on the function of human TSLP and the role played by epithelial cells and DCs in initiating allergic inflammation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Endogenous antimicrobial peptides and skin infections in atopic dermatitis.

            The innate immune system of human skin contains antimicrobial peptides known as cathelicidins (LL-37) and beta-defensins. In normal skin these peptides are negligible, but they accumulate in skin affected by inflammatory diseases such as psoriasis. We compared the levels of expression of LL-37 and human beta-defensin 2 (HBD-2) in inflamed skin from patients with atopic dermatitis and from those with psoriasis. The expression of LL-37 and HBD-2 protein in skin-biopsy specimens from patients with psoriasis, patients with atopic dermatitis, and normal subjects was determined by immunohistochemical analysis. The amount of antimicrobial peptides in extracts of skin samples was also analyzed by immunodot blot analysis (for LL-37) and Western blot analysis (for HBD-2). Quantitative, real-time reverse-transcriptase-polymerase-chain-reaction (RT-PCR) assays were used to confirm the relative expression of HBD-2 and LL-37 messenger RNA (mRNA) in the skin-biopsy specimens. These peptides were also tested for antimicrobial activity against Staphylococcus aureus with the use of a colony-forming assay. Immunohistochemical analysis confirmed the presence of abundant LL-37 and HBD-2 in the superficial epidermis of all patients with psoriasis. In comparison, immunostaining for these peptides was significantly decreased in acute and chronic lesions from patients with atopic dermatitis (P=0.006 and P=0.03, respectively). These results were confirmed by immunodot blot and Western blot analyses. Real-time RT-PCR showed significantly lower expression of HBD-2 mRNA and LL-37 mRNA in atopic lesions than in psoriatic lesions (P=0.009 and P=0.02, respectively). The combination of LL-37 and HBD-2 showed synergistic antimicrobial activity by effectively killing S. aureus. A deficiency in the expression of antimicrobial peptides may account for the susceptibility of patients with atopic dermatitis to skin infection with S. aureus. Copyright 2002 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Epicutaneous sensitization with protein antigen induces localized allergic dermatitis and hyperresponsiveness to methacholine after single exposure to aerosolized antigen in mice.

              Our understanding of the pathogenesis of atopic dermatitis (AD) and its relationship to asthma remains incomplete. Herein, we describe a murine model of epicutaneous (EC) sensitization to the protein allergen, chicken egg albumin, ovalbumin (OVA), which results in a rise in total and OVA-specific serum IgE and leads to the development of a dermatitis characterized by infiltration of CD3(+) T cells, eosinophils, and neutrophils and by local expression of mRNA for the cytokines IL-4, IL-5, and interferon-gamma. A single exposure of the EC sensitized mice to aerosolized OVA induced eosinophilia in the bronchoalveolar lavage fluid and airway hyperresponsiveness to intravenous methacholine as assessed by measurement of pulmonary dynamic compliance (Cdyn). These results suggest a possible role for EC exposure to antigen in atopic dermatitis and in the development of allergic asthma.
                Bookmark

                Author and article information

                Comments

                Comment on this article