3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      ICP-MS for the analysis at the nanoscale – a tutorial review

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The scope of this tutorial review is (i) to provide an overview on ICP-MS based techniques for the analysis of ENPs and natural nanoparticles/colloids by (a) “stand alone” ICP-MS and (b) hyphenated techniques; (ii) highlighting the benefits and pitfalls of each technique as well as providing practical advice regarding method development; (iii) illustrating the possibilities and limitations of each technique by practical applications from the recent literature.

          Abstract

          This tutorial review focuses on the use of ICP-MS based techniques for the analysis of metal-containing nanoparticles and colloids. Within the first part the capabilities of “stand alone” ICP-MS for the analysis of total metal contents and the suitability of stable isotopes for nanoparticle tracking (stable isotope labelling and naturally occurring variation in isotope ratios) are introduced (Chapter 3). Special focus was given on single particle ICP-MS (sp-ICP-MS) mode (Chapter 4). Upon a brief introduction into the theoretical concept, critical aspects such as calibration strategies, dwell time as well as ionic background were discussed and practical advice is given. References to current data assessment sheets are provided. Furthermore, a brief chapter on general sample preparation aspects is included within the first part (Chapter 2). The second part is dedicated to fractionation/separation systems, such as field-flow fractionation (FFF), hydrodynamic chromatography (HDC), high performance liquid chromatography (HPLC) and capillary electrophoresis (CE) coupled on-line with ICP-MS detection for metal-based nanoparticle and colloid analysis (Chapter 5). Each section starts with an introduction into the theoretical concept of the respective fractionation/separation system, followed by practical hints regarding method development ( e.g. selection of appropriate carrier/mobile phase, membrane/stationary phase) as well as critical aspects and limitations. Particular attention is payed to laser ablation ICP-MS (LA-ICP-MS) for spatially resolved nanoparticle analysis. Each section concludes with selected application examples of the respective analytical technique from the most relevant fields of nanoparticle use or exposure (consumer products, food, medicine and environment), highlighting the performance of each technique in metal-based nanoparticle analysis. Chapter 6 is dedicated to aspects of quality assurance. Various critical points regarding method development and validation, mass balance, size calibration and quantification from the previous sections are revisited, discussed and practical advice is given. Finally, the authors provide some concluding remarks and future perspectives (Chapter 7). Furthermore, a flow-chart is included as a “hands-on” overview on all ICP-MS based techniques discussed within this tutorial review intended as a “method-decision tool” for users.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry.

          Mass cytometry enables high-dimensional, single-cell analysis of cell type and state. In mass cytometry, rare earth metals are used as reporters on antibodies. Analysis of metal abundances using the mass cytometer allows determination of marker expression in individual cells. Mass cytometry has previously been applied only to cell suspensions. To gain spatial information, we have coupled immunohistochemical and immunocytochemical methods with high-resolution laser ablation to CyTOF mass cytometry. This approach enables the simultaneous imaging of 32 proteins and protein modifications at subcellular resolution; with the availability of additional isotopes, measurement of over 100 markers will be possible. We applied imaging mass cytometry to human breast cancer samples, allowing delineation of cell subpopulations and cell-cell interactions and highlighting tumor heterogeneity. Imaging mass cytometry complements existing imaging approaches. It will enable basic studies of tissue heterogeneity and function and support the transition of medicine toward individualized molecularly targeted diagnosis and therapies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry.

            A novel instrument for real time analysis of individual biological cells or other microparticles is described. The instrument is based on inductively coupled plasma time-of-flight mass spectrometry and comprises a three-aperture plasma-vacuum interface, a dc quadrupole turning optics for decoupling ions from neutral components, an rf quadrupole ion guide discriminating against low-mass dominant plasma ions, a point-to-parallel focusing dc quadrupole doublet, an orthogonal acceleration reflectron analyzer, a discrete dynode fast ion detector, and an 8-bit 1 GHz digitizer. A high spectrum generation frequency of 76.8 kHz provides capability for collecting multiple spectra from each particle-induced transient ion cloud, typically of 200-300 micros duration. It is shown that the transients can be resolved and characterized individually at a peak frequency of 1100 particles per second. Design considerations and optimization data are presented. The figures of merit of the instrument are measured under standard inductively coupled plasma (ICP) operating conditions ( 900 for m/z = 159, the sensitivity with a standard sample introduction system of >1.4 x 10(8) ion counts per second per mg L(-1) of Tb and an abundance sensitivity of (6 x 10(-4))-(1.4 x 10(-3)) (trailing and leading masses, respectively) are shown. The mass range (m/z = 125-215) and abundance sensitivity are sufficient for elemental immunoassay with up to 60 distinct available elemental tags. When 500) can be used, which provides >2.4 x 10(8) cps per mg L(-1) of Tb, at (1.5 x 10(-3))-(5.0 x 10(-3)) abundance sensitivity. The real-time simultaneous detection of multiple isotopes from individual 1.8 microm polystyrene beads labeled with lanthanides is shown. A real time single cell 20 antigen expression assay of model cell lines and leukemia patient samples immuno-labeled with lanthanide-tagged antibodies is presented.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Reaction cells and collision cells for ICP-MS: a tutorial review

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                JASPE2
                Journal of Analytical Atomic Spectrometry
                J. Anal. At. Spectrom.
                Royal Society of Chemistry (RSC)
                0267-9477
                1364-5544
                2018
                2018
                : 33
                : 9
                : 1432-1468
                Affiliations
                [1 ]Federal Institute of Hydrology
                [2 ]Department G2 – Aquatic Chemistry
                [3 ]56068 Koblenz
                [4 ]Germany
                [5 ]Central Institute for Engineering
                [6 ]Electronics and Analytics
                [7 ]Analytics (ZEA-3)
                [8 ]Forschungszentrum Juelich
                Article
                10.1039/C8JA00037A
                ec1aa895-4a98-4ed2-90a2-72f99606ce0e
                © 2018

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article