96
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Polyadenylation-Dependent Control of Long Noncoding RNA Expression by the Poly(A)-Binding Protein Nuclear 1

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The poly(A)-binding protein nuclear 1 (PABPN1) is a ubiquitously expressed protein that is thought to function during mRNA poly(A) tail synthesis in the nucleus. Despite the predicted role of PABPN1 in mRNA polyadenylation, little is known about the impact of PABPN1 deficiency on human gene expression. Specifically, it remains unclear whether PABPN1 is required for general mRNA expression or for the regulation of specific transcripts. Using RNA sequencing (RNA–seq), we show here that the large majority of protein-coding genes express normal levels of mRNA in PABPN1–deficient cells, arguing that PABPN1 may not be required for the bulk of mRNA expression. Unexpectedly, and contrary to the view that PABPN1 functions exclusively at protein-coding genes, we identified a class of PABPN1–sensitive long noncoding RNAs (lncRNAs), the majority of which accumulated in conditions of PABPN1 deficiency. Using the spliced transcript produced from a snoRNA host gene as a model lncRNA, we show that PABPN1 promotes lncRNA turnover via a polyadenylation-dependent mechanism. PABPN1–sensitive lncRNAs are targeted by the exosome and the RNA helicase MTR4/SKIV2L2; yet, the polyadenylation activity of TRF4-2, a putative human TRAMP subunit, appears to be dispensable for PABPN1–dependent regulation. In addition to identifying a novel function for PABPN1 in lncRNA turnover, our results provide new insights into the post-transcriptional regulation of human lncRNAs.

          Author Summary

          In eukaryotic cells, protein-coding genes are transcribed to produce pre-messenger RNAs (pre–mRNAs) that are processed at the 3′ end by the addition of a sequence of poly-adenosine. This 3′ end poly(A) tail normally confers positive roles to the mRNA life cycle by stimulating nuclear export and translation. The fundamental role of mRNA polyadenylation is generally mediated by the activity of poly(A)-binding proteins (PABPs) that bind to the 3′ poly(A) tail of eukaryotic mRNAs. In the nucleus, the evolutionarily conserved poly(A)-binding protein PABPN1 is thought to be important for gene expression, as it stimulates mRNA polyadenylation in biochemical assays. Using a high-throughput sequencing approach that quantitatively measures the level of RNA expressed from all genes, we addressed the global impact of a PABPN1 deficiency on human gene expression. Notably, we found that most mRNAs were normally expressed in PABPN1–deficient cells, a result inconsistent with a role for PABPN1 in general mRNA metabolism. Surprisingly, our genome-wide analysis unveiled a new function for PABPN1 in a polyadenylation-dependent pathway of RNA decay that targets non-protein coding genes. Our discovery that PABPN1 functions in the regulation of noncoding RNAs raises the possibility that oculopharyngeal muscular dystrophy, a disease associated with mutations in the PABPN1 gene, is caused by defective expression of noncoding RNAs.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Long noncoding RNA as modular scaffold of histone modification complexes.

          Long intergenic noncoding RNAs (lincRNAs) regulate chromatin states and epigenetic inheritance. Here, we show that the lincRNA HOTAIR serves as a scaffold for at least two distinct histone modification complexes. A 5' domain of HOTAIR binds polycomb repressive complex 2 (PRC2), whereas a 3' domain of HOTAIR binds the LSD1/CoREST/REST complex. The ability to tether two distinct complexes enables RNA-mediated assembly of PRC2 and LSD1 and coordinates targeting of PRC2 and LSD1 to chromatin for coupled histone H3 lysine 27 methylation and lysine 4 demethylation. Our results suggest that lincRNAs may serve as scaffolds by providing binding surfaces to assemble select histone modification enzymes, thereby specifying the pattern of histone modifications on target genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ab initio reconstruction of transcriptomes of pluripotent and lineage committed cells reveals gene structures of thousands of lincRNAs

            RNA-Seq provides an unbiased way to study a transcriptome, including both coding and non-coding genes. To date, most RNA-Seq studies have critically depended on existing annotations, and thus focused on expression levels and variation in known transcripts. Here, we present Scripture, a method to reconstruct the transcriptome of a mammalian cell using only RNA-Seq reads and the genome sequence. We apply it to mouse embryonic stem cells, neuronal precursor cells, and lung fibroblasts to accurately reconstruct the full-length gene structures for the vast majority of known expressed genes. We identify substantial variation in protein-coding genes, including thousands of novel 5′-start sites, 3′-ends, and internal coding exons. We then determine the gene structures of over a thousand lincRNA and antisense loci. Our results open the way to direct experimental manipulation of thousands of non-coding RNAs, and demonstrate the power of ab initio reconstruction to render a comprehensive picture of mammalian transcriptomes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs.

              Here, we demonstrate that protein-coding RNA transcripts can crosstalk by competing for common microRNAs, with microRNA response elements as the foundation of this interaction. We have termed such RNA transcripts as competing endogenous RNAs (ceRNAs). We tested this hypothesis in the context of PTEN, a key tumor suppressor whose abundance determines critical outcomes in tumorigenesis. By a combined computational and experimental approach, we identified and validated endogenous protein-coding transcripts that regulate PTEN, antagonize PI3K/AKT signaling, and possess growth- and tumor-suppressive properties. Notably, we also show that these genes display concordant expression patterns with PTEN and copy number loss in cancers. Our study presents a road map for the prediction and validation of ceRNA activity and networks and thus imparts a trans-regulatory function to protein-coding mRNAs. Copyright © 2011 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                November 2012
                November 2012
                15 November 2012
                : 8
                : 11
                : e1003078
                Affiliations
                [1 ]RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, Canada
                [2 ]Department of Human Genetics, McGill University, Montreal, Québec, Canada
                Massachusetts General Hospital, Howard Hughes Medical Institute, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: YBB A-ML-V FB. Performed the experiments: YBB A-ML-V. Analyzed the data: YBB A-ML-V CLK JM FB. Contributed reagents/materials/analysis tools: YBB A-ML-V CLK JM FB. Wrote the paper: FB.

                Article
                PGENETICS-D-12-01122
                10.1371/journal.pgen.1003078
                3499365
                23166521
                4ab8a846-2343-44c0-adc2-a240de10ec02
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 3 May 2012
                : 26 September 2012
                Page count
                Pages: 17
                Funding
                Funding was provided by the Canadian Institutes of Health Research (CIHR) Grant MOP219652 to FB. FB is the recipient of a Canada Research Chair. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Genetics
                Gene Expression
                RNA stability
                Molecular Genetics
                Gene Classes
                Gene Identification and Analysis
                Gene Regulation
                Gene Function
                Genetics of Disease
                Genomics
                Genome Analysis Tools
                Transcriptomes
                Genome Databases
                Sequence Databases
                Genome Expression Analysis
                Molecular Cell Biology
                Gene Expression
                DNA transcription
                RNA stability

                Genetics
                Genetics

                Comments

                Comment on this article