9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Rpsa Signaling Regulates Cortical Neuronal Morphogenesis via Its Ligand, PEDF, and Plasma Membrane Interaction Partner, Itga6

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neuromorphological defects underlie neurodevelopmental disorders and functional defects. We identified a function for Rpsa in regulating neuromorphogenesis using in utero electroporation to knockdown Rpsa, resulting in apical dendrite misorientation, fewer/shorter extensions, and decreased spine density with altered spine morphology in upper neuronal layers and decreased arborization in upper/lower cortical layers. Rpsa knockdown disrupts multiple aspects of cortical development, including radial glial cell fiber morphology and neuronal layering. We investigated Rpsa’s ligand, PEDF, and interacting partner on the plasma membrane, Itga6. Rpsa, PEDF, and Itga6 knockdown cause similar phenotypes, with Rpsa and Itga6 overexpression rescuing morphological defects in PEDF-deficient neurons in vivo. Additionally, Itga6 overexpression increases and stabilizes Rpsa expression on the plasma membrane. GCaMP6s was used to functionally analyze Rpsa knockdown via ex vivo calcium imaging. Rpsa-deficient neurons showed less fluctuation in fluorescence intensity, suggesting defective subthreshold calcium signaling. The Serpinf1 gene coding for PEDF is localized at chromosome 17p13.3, which is deleted in patients with the neurodevelopmental disorder Miller–Dieker syndrome. Our study identifies a role for Rpsa in early cortical development and for PEDF-Rpsa-Itga6 signaling in neuromorphogenesis, thus implicating these molecules in the etiology of neurodevelopmental disorders like Miller–Dieker syndrome and identifying them as potential therapeutics.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          Ultra-sensitive fluorescent proteins for imaging neuronal activity

          Summary Fluorescent calcium sensors are widely used to image neural activity. Using structure-based mutagenesis and neuron-based screening, we developed a family of ultra-sensitive protein calcium sensors (GCaMP6) that outperformed other sensors in cultured neurons and in zebrafish, flies, and mice in vivo. In layer 2/3 pyramidal neurons of the mouse visual cortex, GCaMP6 reliably detected single action potentials in neuronal somata and orientation-tuned synaptic calcium transients in individual dendritic spines. The orientation tuning of structurally persistent spines was largely stable over timescales of weeks. Orientation tuning averaged across spine populations predicted the tuning of their parent cell. Although the somata of GABAergic neurons showed little orientation tuning, their dendrites included highly tuned dendritic segments (5 - 40 micrometers long). GCaMP6 sensors thus provide new windows into the organization and dynamics of neural circuits over multiple spatial and temporal scales.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Electroporation and RNA interference in the rodent retina in vivo and in vitro.

            The large number of candidate genes made available by comprehensive genome analysis requires that relatively rapid techniques for the study of function be developed. Here, we report a rapid and convenient electroporation method for both gain- and loss-of-function studies in vivo and in vitro in the rodent retina. Plasmid DNA directly injected into the subretinal space of neonatal rodent pups was taken up by a significant fraction of exposed cells after several pulses of high voltage. With this technique, GFP expression vectors were efficiently transfected into retinal cells with little damage to the operated pups. Transfected GFP allowed clear visualization of cell morphologies, and the expression persisted for at least 50 days. DNA-based RNA interference vectors directed against two transcription factors important in photoreceptor development led to photoreceptor phenotypes similar to those of the corresponding knockout mice. Reporter constructs carrying retinal cell type-specific promoters were readily introduced into the retina in vivo, where they exhibited the appropriate expression patterns. Plasmid DNA was also efficiently transfected into retinal explants in vitro by high-voltage pulses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The structure of the eukaryotic ribosome at 3.0 Å resolution.

              Ribosomes translate genetic information encoded by messenger RNA into proteins. Many aspects of translation and its regulation are specific to eukaryotes, whose ribosomes are much larger and intricate than their bacterial counterparts. We report the crystal structure of the 80S ribosome from the yeast Saccharomyces cerevisiae--including nearly all ribosomal RNA bases and protein side chains as well as an additional protein, Stm1--at a resolution of 3.0 angstroms. This atomic model reveals the architecture of eukaryote-specific elements and their interaction with the universally conserved core, and describes all eukaryote-specific bridges between the two ribosomal subunits. It forms the structural framework for the design and analysis of experiments that explore the eukaryotic translation apparatus and the evolutionary forces that shaped it.
                Bookmark

                Author and article information

                Journal
                Cerebral Cortex
                Oxford University Press (OUP)
                1047-3211
                1460-2199
                February 15 2022
                February 08 2022
                August 04 2021
                February 15 2022
                February 08 2022
                August 04 2021
                : 32
                : 4
                : 770-795
                Affiliations
                [1 ]Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
                Article
                10.1093/cercor/bhab242
                e21f6121-e275-4c03-8b24-ec7373e8fcb2
                © 2021

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article