16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Peptidoglycan synthesis drives an FtsZ-treadmilling-independent step of cytokinesis

      Nature
      Springer Nature

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria.

          A shuttle vector designated pMAD was constructed for quickly generating gene inactivation mutants in naturally nontransformable gram-positive bacteria. This vector allows, on X-Gal (5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside) plates, a quick colorimetric blue-white discrimination of bacteria which have lost the plasmid, greatly facilitating clone identification during mutagenesis. The plasmid was used in Staphylococcus aureus, Listeria monocytogenes, and Bacillus cereus to efficiently construct mutants with or without an associated antibiotic resistance gene.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            In Situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent D-amino acids.

            Tracking a bug's life: Peptidoglycan (PG) of diverse bacteria is labeled by exploiting the tolerance of cells for incorporating different non-natural D-amino acids. These nontoxic D-amino acids preferably label the sites of active PG synthesis, thereby enabling fine spatiotemporal tracking of cell-wall dynamics in phylogenetically and morphologically diverse bacteria. HCC = 7-hydroxycoumarin, NBD = 7-nitrobenzofurazan, TAMRA = carboxytetramethylrhodamine. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              How to get (a)round: mechanisms controlling growth and division of coccoid bacteria.

              Bacteria come in a range of shapes, including round, rod-shaped, curved and spiral cells. This morphological diversity implies that different mechanisms exist to guide proper cell growth, division and chromosome segregation. Although the majority of studies on cell division have focused on rod-shaped cells, the development of new genetic and cell biology tools has provided mechanistic insight into the cell cycles of bacteria with different shapes, allowing us to appreciate the underlying molecular basis for their morphological diversity. In this Review, we discuss recent progress that has advanced our knowledge of the complex mechanisms for chromosome segregation and cell division in bacteria which have, deceptively, the simplest possible shape: the cocci.
                Bookmark

                Author and article information

                Journal
                10.1038/nature25506

                Comments

                Comment on this article