10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biological Activities and Cytotoxicity of Diterpenes from Copaifera spp. Oleoresins

      Molecules
      MDPI

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: not found
          • Article: not found

          Assessment of the Alamar Blue assay for cellular growth and viability in vitro.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Chemistry and Biological Activities of Terpenoids from Copaiba ( Copaifera spp.) Oleoresins

            Copaiba oleoresins are exuded from the trunks of trees of the Copaifera species (Leguminosae-Caesalpinoideae). This oleoresin is a solution of diterpenoids, especially, mono- and di-acids, solubilized by sesquiterpene hydrocarbons. The sesquiterpenes and diterpenes (labdane, clerodane and kaurane skeletons) are different for each Copaifera species and have been linked to several reported biological activities, ranging from anti-tumoral to embriotoxic effects. This review presents all the substances already described in this oleoresin, together with structures and activities of its main terpenoids.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              IL-10-inducible Bcl-3 negatively regulates LPS-induced TNF-alpha production in macrophages.

              Interleukin-10 (IL-10) plays an important role in prevention of chronic inflammation in vivo. However, the molecular mechanism by which IL-10 exerts its anti-inflammatory response is poorly understood. Here, we performed a microarray analysis and identified Bcl-3 as an IL-10-inducible gene in macrophages. Lentiviral vector-mediated expression of Bcl-3 inhibited lipopolysaccharide (LPS)-induced production of tumor necrosis factor alpha (TNF-alpha), but not IL-6, in macrophages. In Bcl-3-transduced and IL-10-pretreated macrophages, LPS-induced nuclear translocation of nuclear factor kappaB (NF-kappaB) p65 was not impaired. However, DNA binding by NF-kappaB p50/p65 was profoundly inhibited. Nuclear localization of Bcl-3 was associated with inhibition of LPS-induced TNF-alpha production. Overexpression of Bcl-3 suppressed activation of the TNF-alpha promoter, but not the IL-6 promoter. Bcl-3 interacted with NF-kappaB p50 and was recruited to the TNF-alpha promoter, but not the IL-6 promoter, indicating that Bcl-3 facilitates p50-mediated inhibition of TNF-alpha expression. Furthermore, Bcl-3-deficient macrophages showed defective IL-10-mediated suppression of LPS induction of TNF-alpha, but not IL-6. These findings suggest that IL-10-induced Bcl-3 is required for suppression of TNF-alpha production in macrophages.
                Bookmark

                Author and article information

                Journal
                10.3390/molecules20046194
                https://creativecommons.org/licenses/by/4.0/

                Comments

                Comment on this article