167
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cucurbitane Triterpenoid fromMomordica charantiaInduces Apoptosis and Autophagy in Breast Cancer Cells, in Part, through Peroxisome Proliferator-Activated ReceptorγActivation

      Evidence-Based Complementary and Alternative Medicine
      Hindawi Limited

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although the antitumor activity of the crude extract of wild bitter gourd ( Momordica charantia L.) has been reported, its bioactive constituents and the underlying mechanism remain undefined. Here, we report that 3 β ,7 β -dihydroxy-25-methoxycucurbita-5,23-diene-19-al (DMC), a cucurbitane-type triterpene isolated from wild bitter gourd, induced apoptotic death in breast cancer cells through peroxisome proliferator-activated receptor (PPAR) γ activation. Luciferase reporter assays indicated the ability of DMC to activate PPAR γ , and pharmacological inhibition of PPAR γ protected cells from DMC's antiproliferative effect. Western blot analysis indicated that DMC suppressed the expression of many PPAR γ -targeted signaling effectors, including cyclin D1, CDK6, Bcl-2, XIAP, cyclooxygenase-2, NF- κ B, and estrogen receptor α , and induced endoplasmic reticulum stress, as manifested by the induction of GADD153 and GRP78 expression. Moreover, DMC inhibited mTOR-p70S6K signaling through Akt downregulation and AMPK activation. The ability of DMC to activate AMPK in liver kinase (LK) B1-deficient MDA-MB-231 cells suggests that this activation was independent of LKB1-regulated cellular metabolic status. However, DMC induced a cytoprotective autophagy presumably through mTOR inhibition, which could be overcome by the cotreatment with the autophagy inhibitor chloroquine. Together, the ability of DMC to modulate multiple PPAR γ -targeted signaling pathways provides a mechanistic basis to account for the antitumor activity of wild bitter gourd.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1.

          Autophagy is a process by which components of the cell are degraded to maintain essential activity and viability in response to nutrient limitation. Extensive genetic studies have shown that the yeast ATG1 kinase has an essential role in autophagy induction. Furthermore, autophagy is promoted by AMP activated protein kinase (AMPK), which is a key energy sensor and regulates cellular metabolism to maintain energy homeostasis. Conversely, autophagy is inhibited by the mammalian target of rapamycin (mTOR), a central cell-growth regulator that integrates growth factor and nutrient signals. Here we demonstrate a molecular mechanism for regulation of the mammalian autophagy-initiating kinase Ulk1, a homologue of yeast ATG1. Under glucose starvation, AMPK promotes autophagy by directly activating Ulk1 through phosphorylation of Ser 317 and Ser 777. Under nutrient sufficiency, high mTOR activity prevents Ulk1 activation by phosphorylating Ulk1 Ser 757 and disrupting the interaction between Ulk1 and AMPK. This coordinated phosphorylation is important for Ulk1 in autophagy induction. Our study has revealed a signalling mechanism for Ulk1 regulation and autophagy induction in response to nutrient signalling.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A unified nomenclature for yeast autophagy-related genes.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              PPARγ is an E3 ligase that induces the degradation of NFκB/p65.

              Nuclear factor-κB (NFκB) and peroxisome proliferator activated receptor-γ (PPARγ) are both transcription factors that perform distinct but overlapping roles in cellular regulation. Here we report that PPARγ acts as an E3 ubiquitin ligase, physically interacting with p65 to induce its ubiquitination and degradation. The ligand-binding domain of PPARγ interacts with the Rel Homology Domain region of NFκB/p65 to undergo robust ubiquitination and degradation that was independent of PPARγ transcriptional activity. Moreover, the ligand-binding domain of PPARγ delivered Lys48-linked polyubiquitin, resulting in the ubiquitination and degradation of p65. Lys28 was found to be critically important for PPARγ-mediated ubiquitination and degradation of p65, as it terminated both NFκB/p65-mediated pro-inflammatory responses and xenograft tumours. These findings demonstrate that PPARγ E3 ubiquitin ligase activity induces Lys48-linked ubiquitination and degradation of p65, and that this function is critical to terminate NFκB signalling pathway-elicited inflammation and cancer.
                Bookmark

                Author and article information

                Journal
                10.1155/2013/935675
                http://creativecommons.org/licenses/by/3.0/

                Comments

                Comment on this article