18
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intra-articular collagenase injection increases range of motion in a rat knee flexion contracture model

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objectives

          A knee joint contracture, a loss in passive range of motion (ROM), can be caused by prolonged immobility. In a rat knee immobilization flexion contracture model, the posterior capsule was shown to contribute to an irreversible limitation in ROM, and collagen pathways were identified as differentially expressed over the development of a contracture. Collagenases purified from Clostridium histolyticum are currently prescribed to treat Dupuytren’s and Peyronie’s contractures due to their ability to degrade collagen. The potential application of collagenases to target collagen in the posterior capsule was tested in this model.

          Materials and methods

          Rats had one hind leg immobilized, developing a knee flexion contracture. After 4 weeks, the immobilization device was removed, and the rats received one 50 µL intra-articular injection of 0.6 mg/mL purified collagenase. Control rats were injected with only the buffer. After 2 weeks of spontaneous remobilization following the injections, ROM was measured with a rat knee arthrometer, and histological sections were immunostained with antibodies against rat collagen types I and III.

          Results/conclusion

          Compared with buffer-injected control knees, collagenase-treated knees showed increased ROM in extension by 8.0°±3.8° ( p-value <0.05). Immunohistochemical analysis revealed an increase in collagen type III staining ( p<0.01) in the posterior capsule of collagenase-treated knees indicating an effect on the extracellular matrix due to the collagenase. Collagen I staining was unchanged ( p>0.05). The current study provides experimental evidence for the pharmacological treatment of knee flexion contractures with intra-articular collagenase injection, improving the knee ROM.

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          NIH Image to ImageJ: 25 years of image analysis.

          For the past 25 years NIH Image and ImageJ software have been pioneers as open tools for the analysis of scientific images. We discuss the origins, challenges and solutions of these two programs, and how their history can serve to advise and inform other software projects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Weight bearing as a measure of disease progression and efficacy of anti-inflammatory compounds in a model of monosodium iodoacetate-induced osteoarthritis.

            To describe an in vivo model in the rat in which change in weight distribution is used as a measure of disease progression and efficacy of acetaminophen and two nonsteroidal anti-inflammatory drugs (NSAIDs) in a model of monosodium iodoacetate (MIA)-induced osteoarthritis (OA). Intra-articular injections of MIA and saline were administered to male Wistar rats (175-200 g) into the right and left knee joints, respectively. Changes in hind paw weight distribution between the right (osteoarthritic) and left (contralateral control) limbs were utilized as an index of joint discomfort. Acetaminophen and two archetypal, orally administered NSAIDs, naproxen and rofecoxib, were examined for their ability to decrease MIA-induced change in weight distribution. A concentration-dependent increase in change in hind paw weight distribution was noted after intra-articular injection of MIA. Both naproxen and rofecoxib demonstrated the capacity to significantly (P<0.05) decrease hind paw weight distribution in a dose-dependent fashion, indicating that the change in weight distribution associated with MIA injection is susceptible to pharmacological intervention. The determination of differences in hind paw weight distribution in the rat MIA model of OA is a technically straightforward, reproducible method that is predictive of the effects of anti-inflammatory and analgesic agents. This system may be useful for the discovery of novel pharmacologic agents in human OA.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Joint contracture following prolonged stay in the intensive care unit.

              Prolonged immobility during a critical illness may predispose patients to the development of joint contracture. We sought to document the incidence of, the risk factors for and the reversibility of joint contractures among patients who stayed in a tertiary intensive care unit (ICU) for 2 weeks or longer. We conducted a chart review to collect data on the presence of and risk factors for joint contractures in the shoulders, elbows, hips, knees and ankles among patients admitted to the ICU between January 2003 and March 2005. At the time of transfer out of the ICU, at least 1 joint contracture was recorded in 61 (39%) of 155 patients; 52 (34%) of the patients had joint contractures of an extent documented to impair function. Time spent in the ICU was a significant risk factor for contracture: a stay of 8 weeks or longer was associated with a significantly greater risk of any joint contracture than a stay of 2 to 3 weeks (adjusted odds ratio [OR] 7.09, 95% confidence interval (CI) 1.29-38.9; p = 0.02). Among the variables tested, only the use of steroids conferred a protective effect against joint contractures (adjusted OR 0.35, 95% CI 0.14-0.83; p = 0.02). At the time of discharge to home, which occurred a median of 6.6 weeks after transfer out of intensive care, 50 (34%) of the 147 patients not lost to follow-up still had 1 or more joint contractures, and 34 (23%) of the patients had at least 1 functionally significant joint contracture. Following a prolonged stay in the ICU, a functionally significant contracture of a major joint occurred in more than one-third of patients, and most of these contractures persisted until the time of discharge to home.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2018
                21 December 2017
                : 12
                : 15-24
                Affiliations
                [1 ]Bone and Joint Research Laboratory, The Ottawa Hospital Rehabilitation Centre, Ottawa, Ontario
                [2 ]Department of Medicine, Bone and Joint Research Laboratory, The Ottawa Hospital Rehabilitation Centre, Ottawa, Ontario
                [3 ]Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
                Author notes
                Correspondence: Odette Laneuville, Department of Biology, Faculty of Science, University of Ottawa, Gendron Hall Room 4-449, 30 Marie Curie, Ottawa ON K1N 6N5, Canada, Tel +1 613 562 5800 ext 4606, Email olaneuvi@ 123456uottawa.ca
                Article
                dddt-12-015
                10.2147/DDDT.S144602
                5743116
                5a08f9e4-332d-4271-b0ed-eb3c7122e276
                © 2018 Wong et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Pharmacology & Pharmaceutical medicine
                joint,contracture,collagen,immobilization range of motion

                Comments

                Comment on this article