52
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Volitional exaggeration of body size through fundamental and formant frequency modulation in humans

      Scientific Reports
      Nature Publishing Group

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Several mammalian species scale their voice fundamental frequency (F0) and formant frequencies in competitive and mating contexts, reducing vocal tract and laryngeal allometry thereby exaggerating apparent body size. Although humans’ rare capacity to volitionally modulate these same frequencies is thought to subserve articulated speech, the potential function of voice frequency modulation in human nonverbal communication remains largely unexplored. Here, the voices of 167 men and women from Canada, Cuba, and Poland were recorded in a baseline condition and while volitionally imitating a physically small and large body size. Modulation of F0, formant spacing (∆F), and apparent vocal tract length (VTL) were measured using Praat. Our results indicate that men and women spontaneously and systemically increased VTL and decreased F0 to imitate a large body size, and reduced VTL and increased F0 to imitate small size. These voice modulations did not differ substantially across cultures, indicating potentially universal sound-size correspondences or anatomical and biomechanical constraints on voice modulation. In each culture, men generally modulated their voices (particularly formants) more than did women. This latter finding could help to explain sexual dimorphism in F0 and formants that is currently unaccounted for by sexual dimorphism in human vocal anatomy and body size.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Crossmodal correspondences: a tutorial review.

          In many everyday situations, our senses are bombarded by many different unisensory signals at any given time. To gain the most veridical, and least variable, estimate of environmental stimuli/properties, we need to combine the individual noisy unisensory perceptual estimates that refer to the same object, while keeping those estimates belonging to different objects or events separate. How, though, does the brain "know" which stimuli to combine? Traditionally, researchers interested in the crossmodal binding problem have focused on the roles that spatial and temporal factors play in modulating multisensory integration. However, crossmodal correspondences between various unisensory features (such as between auditory pitch and visual size) may provide yet another important means of constraining the crossmodal binding problem. A large body of research now shows that people exhibit consistent crossmodal correspondences between many stimulus features in different sensory modalities. For example, people consistently match high-pitched sounds with small, bright objects that are located high up in space. The literature reviewed here supports the view that crossmodal correspondences need to be considered alongside semantic and spatiotemporal congruency, among the key constraints that help our brains solve the crossmodal binding problem.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The evolution of speech: a comparative review.

            The evolution of speech can be studied independently of the evolution of language, with the advantage that most aspects of speech acoustics, physiology and neural control are shared with animals, and thus open to empirical investigation. At least two changes were necessary prerequisites for modern human speech abilities: (1) modification of vocal tract morphology, and (2) development of vocal imitative ability. Despite an extensive literature, attempts to pinpoint the timing of these changes using fossil data have proven inconclusive. However, recent comparative data from nonhuman primates have shed light on the ancestral use of formants (a crucial cue in human speech) to identify individuals and gauge body size. Second, comparative analysis of the diverse vertebrates that have evolved vocal imitation (humans, cetaceans, seals and birds) provides several distinct, testable hypotheses about the adaptive function of vocal mimicry. These developments suggest that, for understanding the evolution of speech, comparative analysis of living species provides a viable alternative to fossil data. However, the neural basis for vocal mimicry and for mimesis in general remains unknown.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Brain mechanisms of acoustic communication in humans and nonhuman primates: an evolutionary perspective.

              Any account of "what is special about the human brain" (Passingham 2008) must specify the neural basis of our unique ability to produce speech and delineate how these remarkable motor capabilities could have emerged in our hominin ancestors. Clinical data suggest that the basal ganglia provide a platform for the integration of primate-general mechanisms of acoustic communication with the faculty of articulate speech in humans. Furthermore, neurobiological and paleoanthropological data point at a two-stage model of the phylogenetic evolution of this crucial prerequisite of spoken language: (i) monosynaptic refinement of the projections of motor cortex to the brainstem nuclei that steer laryngeal muscles, presumably, as part of a "phylogenetic trend" associated with increasing brain size during hominin evolution; (ii) subsequent vocal-laryngeal elaboration of cortico-basal ganglia circuitries, driven by human-specific FOXP2 mutations.;>This concept implies vocal continuity of spoken language evolution at the motor level, elucidating the deep entrenchment of articulate speech into a "nonverbal matrix" (Ingold 1994), which is not accounted for by gestural-origin theories. Moreover, it provides a solution to the question for the adaptive value of the "first word" (Bickerton 2009) since even the earliest and most simple verbal utterances must have increased the versatility of vocal displays afforded by the preceding elaboration of monosynaptic corticobulbar tracts, giving rise to enhanced social cooperation and prestige. At the ontogenetic level, the proposed model assumes age-dependent interactions between the basal ganglia and their cortical targets, similar to vocal learning in some songbirds. In this view, the emergence of articulate speech builds on the "renaissance" of an ancient organizational principle and, hence, may represent an example of "evolutionary tinkering" (Jacob 1977).
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                30 September 2016
                2016
                : 6
                : 34389
                Affiliations
                [1 ]Department of Psychology, Neuroscience & Behaviour, McMaster University , Canada
                [2 ]Institute of Psychology, University of Wrocław , Poland
                [3 ]Mammal Vocal Communication & Cognition Research Group, School of Psychology, University of Sussex , United Kingdom
                [4 ]Department of Animal and Human Biology, Faculty of Biology, University of Havana , Cuba
                [5 ]Instituto de Ciencias Biomedicas, Universidad Autonoma de Chile, El Llano Subercaseaux 2801 , San Miguel, Santiago, Chile
                Author notes
                Article
                srep34389
                10.1038/srep34389
                5043380
                27687571
                4152e0d5-d876-44f5-8c62-c80640473aa0
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 15 February 2016
                : 09 September 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article