30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Schisandra chinensis Fructus and Its Active Ingredients as Promising Resources for the Treatment of Neurological Diseases

      review-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neurological diseases (NDs) are a leading cause of death worldwide and tend to mainly affect people under the age of 50. High rates of premature death and disability caused by NDs undoubtedly constrain societal development. However, effective therapeutic drugs and methods are very limited. Schisandra chinensis Fructus (SCF) is the dry ripe fruit of Schisandra chinensis (Turcz.) Baill, which has been used in traditional Chinese medicine for thousands of years. Recent research has indicated that SCF and its active ingredients show a protective role in NDs, including cerebrovascular diseases, neurodegenerative diseases, or depression. The key neuroprotective mechanisms of SCF and its active ingredients have been demonstrated to include antioxidation, suppression of apoptosis, anti-inflammation, regulation of neurotransmitters, and modulation of brain-derived neurotrophic factor (BDNF) related pathways. This paper summarizes studies of the role of SCF and its active ingredients in protecting against NDs, and highlights them as promising resources for future treatment. Furthermore, novel insights on the future challenges of SCF and its active ingredients are offered.

          Related collections

          Most cited references110

          • Record: found
          • Abstract: found
          • Article: not found

          Role of mitochondrial ROS in the brain: from physiology to neurodegeneration.

          Mitochondria are key cell organelles in that they are responsible for energy production and control many processes from signalling to cell death. The function of the mitochondrial electron transport chain is coupled with the production of reactive oxygen species (ROS) in the form of superoxide anion or hydrogen peroxide. As a result of the constant production of ROS, mitochondria are protected by highly efficient antioxidant systems. The rapidly changing levels of ROS in mitochondria, coupled with multiple essential cellular functions, make ROS apt for physiological signalling. Thus, mutations, environmental toxins and chronic ischaemic conditions could affect the mitochondrial redox balance and lead to the development of pathology. In long-living and non-mitotic cells such as neurons, oxidative stress induced by overproduction of mitochondrial ROS or impairment of the antioxidant defence results in a dysfunction of mitochondria and initiation of the cell death cascade. Mitochondrial ROS overproduction and changes in mitochondrial redox homeostasis have been shown to be involved in both a number of neurological conditions and a majority of neurodegenerative diseases. Here, we summarise the involvement of mitochondrial ROS in the mechanism of neuronal loss of major neurodegenerative disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of microglial activation in stroke

            When ischemic stroke occurs, oxygen and energy depletion triggers a cascade of events, including inflammatory responses, glutamate excitotoxicity, oxidative stress, and apoptosis that result in a profound brain injury. The inflammatory response contributes to secondary neuronal damage, which exerts a substantial impact on both acute ischemic injury and the chronic recovery of the brain function. Microglia are the resident immune cells in the brain that constantly monitor brain microenvironment under normal conditions. Once ischemia occurs, microglia are activated to produce both detrimental and neuroprotective mediators, and the balance of the two counteracting mediators determines the fate of injured neurons. The activation of microglia is defined as either classic (M1) or alternative (M2): M1 microglia secrete pro-inflammatory cytokines (TNFα, IL-23, IL-1β, IL-12, etc) and exacerbate neuronal injury, whereas the M2 phenotype promotes anti-inflammatory responses that are reparative. It has important translational value to regulate M1/M2 microglial activation to minimize the detrimental effects and/or maximize the protective role. Here, we discuss various regulators of microglia/macrophage activation and the interaction between microglia and neurons in the context of ischemic stroke.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Molecular and Cellular Effect of Homocysteine Metabolism Imbalance on Human Health

              Homocysteine (Hcy) is a sulfur-containing non-proteinogenic amino acid derived in methionine metabolism. The increased level of Hcy in plasma, hyperhomocysteinemia, is considered to be an independent risk factor for cardio and cerebrovascular diseases. However, it is still not clear if Hcy is a marker or a causative agent of diseases. More and more research data suggest that Hcy is an important indicator for overall health status. This review represents the current understanding of molecular mechanism of Hcy metabolism and its link to hyperhomocysteinemia-related pathologies in humans. The aberrant Hcy metabolism could lead to the redox imbalance and oxidative stress resulting in elevated protein, nucleic acid and carbohydrate oxidation and lipoperoxidation, products known to be involved in cytotoxicity. Additionally, we examine the role of Hcy in thiolation of proteins, which results in their molecular and functional modifications. We also highlight the relationship between the imbalance in Hcy metabolism and pathogenesis of diseases, such as cardiovascular diseases, neurological and psychiatric disorders, chronic kidney disease, bone tissue damages, gastrointestinal disorders, cancer, and congenital defects.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                06 July 2018
                July 2018
                : 19
                : 7
                : 1970
                Affiliations
                [1 ]School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; zhangminyu@ 123456ccmu.edu.cn (M.Z.); xulp@ 123456ccmu.edu.cn (L.X.)
                [2 ]Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing 100069, China
                [3 ]Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
                Author notes
                [* ]Correspondence: hongjun0420@ 123456vip.sina.com ; Tel.: +86-10-6401-4411
                Author information
                https://orcid.org/0000-0002-9197-3283
                Article
                ijms-19-01970
                10.3390/ijms19071970
                6073455
                29986408
                066b46c2-0457-4e33-bc84-26836b7885a0
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 30 May 2018
                : 30 June 2018
                Categories
                Review

                Molecular biology
                schisandra chinensis fructus,active ingredients,neurological diseases,molecular mechanism

                Comments

                Comment on this article