19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Influence of Maximal Running Shoes on Biomechanics Before and After a 5K Run

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          Lower extremity injuries are common among runners. Recent trends in footwear have included minimal and maximal running shoe types. Maximal running shoes are unique because they provide the runner with a highly cushioned midsole in both the rearfoot and forefoot. However, little is known about how maximal shoes influence running biomechanics.

          Purpose:

          To examine the influence of maximal running shoes on biomechanics before and after a 5-km (5K) run as compared with neutral running shoes.

          Study Design:

          Controlled laboratory study.

          Methods:

          Fifteen female runners participated in 2 testing sessions (neutral shoe session and maximal shoe session), with 7 to 10 days between sessions. Three-dimensional kinematic and kinetic data were collected while participants ran along a 10-m runway. After 5 running trials, participants completed a 5K treadmill run, followed by 5 additional running trials. Variables of interest included impact peak of the vertical ground-reaction force, loading rate, and peak eversion. Differences were determined by use of a series of 2-way repeated-measures analysis of variance models (shoe × time).

          Results:

          A significant main effect was found for shoe type for impact peak and loading rate. When the maximal shoe was compared with the neutral shoe before and after the 5K run, participants exhibited an increased loading rate (mean ± SE: pre–maximal shoe, 81.15 body weights/second [BW/s] and pre–neutral shoe, 60.83 BW/s [ P < .001]; post–maximal shoe, 79.10 BW/s and post–neutral shoe, 61.22 BW/s [ P = .008]) and increased impact peak (pre–maximal shoe, 1.76 BW and pre–neutral shoe, 1.58 BW [ P = .004]; post–maximal shoe, 1.79 BW and post–neutral shoe, 1.55 BW [ P = .003]). There were no shoe × time interactions and no significant findings for peak eversion.

          Conclusion:

          Runners exhibited increased impact forces and loading rate when running in a maximal versus neutral shoe. Because increases in these variables have been associated with an increased risk of running-related injuries, runners who are new to running in a maximal shoe may be at an increased risk of injury.

          Clinical Relevance:

          Understanding the influence of running footwear as an intervention that affects running biomechanics is important for clinicians so as to reduce patient injury.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          A retrospective case-control analysis of 2002 running injuries.

          To provide an extensive and up to date database for specific running related injuries, across the sexes, as seen at a primary care sports medicine facility, and to assess the relative risk for individual injuries based on investigation of selected risk factors. Patient data were recorded by doctors at the Allan McGavin Sports Medicine Centre over a two year period. They included assessment of anthropometric, training, and biomechanical information. A model was constructed (with odds ratios and their 95% confidence intervals) of possible contributing factors using a dependent variable of runners with a specific injury and comparing them with a control group of runners who experienced a different injury. Variables included in the model were: height, weight, body mass index, age, activity history, weekly activity, history of injury, and calibre of runner. Most of the study group were women (54%). Some injuries occurred with a significantly higher frequency in one sex. Being less than 34 years old was reported as a risk factor across the sexes for patellofemoral pain syndrome, and in men for iliotibial band friction syndrome, patellar tendinopathy, and tibial stress syndrome. Being active for less than 8.5 years was positively associated with injury in both sexes for tibial stress syndrome; and women with a body mass index less than 21 kg/m(2) were at a significantly higher risk for tibial stress fractures and spinal injuries. Patellofemoral pain syndrome was the most common injury, followed by iliotibial band friction syndrome, plantar fasciitis, meniscal injuries of the knee, and tibial stress syndrome. Although various risk factors were shown to be positively associated with a risk for, or protection from, specific injuries, future research should include a non-injured control group and a more precise measure of weekly running distance and running experience to validate these results.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            What are the Main Running-Related Musculoskeletal Injuries?

            Background Musculoskeletal injuries occur frequently in runners and despite many studies about running injuries conducted over the past decades it is not clear in the literature what are the main running-related musculoskeletal injuries (RRMIs). Objective The aim of this study is to systematically review studies on the incidence and prevalence of the main specific RRMIs. Methods An electronic database search was conducted using EMBASE (1947 to October 2011), MEDLINE (1966 to October 2011), SPORTDiscus™ (1975 to October 2011), the Latin American and Caribbean Center on Health Sciences Information (LILACS) [1982 to October 2011] and the Scientific Electronic Library Online (SciELO) [1998 to October 2011] with no limits of date or language of publication. Articles that described the incidence or prevalence rates of RRMIs were considered eligible. Studies that reported only the type of injury, anatomical region or incomplete data that precluded interpretation of the incidence or prevalence rates of RRMIs were excluded. We extracted data regarding bibliometric characteristics, study design, description of the population of runners, RRMI definition, how the data of RRMIs were collected and the name of each RRMI with their rates of incidence or prevalence. Separate analysis for ultra-marathoners was performed. Among 2924 potentially eligible titles, eight studies (pooled n = 3500 runners) were considered eligible for the review. In general, the articles had moderate risk of bias and only one fulfilled less than half of the quality criteria established. Results A total of 28 RRMIs were found and the main general RRMIs were medial tibial stress syndrome (incidence ranging from 13.6% to 20.0%; prevalence of 9.5%), Achilles tendinopathy (incidence ranging from 9.1% to 10.9%; prevalence ranging from 6.2% to 9.5%) and plantar fasciitis (incidence ranging from 4.5% to 10.0%; prevalence ranging from 5.2% to 17.5%). The main ultra-marathon RRMIs were Achilles tendinopathy (prevalence ranging from 2.0% to 18.5%) and patellofemoral syndrome (prevalence ranging from 7.4% to 15.6%). Conclusion This systematic review provides evidence that medial tibia stress syndrome, Achilles tendinopathy and plantar fasciitis were the main general RRMIs, while Achilles tendinopathy and patellofemoral syndrome were the most common RRMIs for runners who participated in ultra-marathon races.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Foot strike patterns and collision forces in habitually barefoot versus shod runners.

              Humans have engaged in endurance running for millions of years, but the modern running shoe was not invented until the 1970s. For most of human evolutionary history, runners were either barefoot or wore minimal footwear such as sandals or moccasins with smaller heels and little cushioning relative to modern running shoes. We wondered how runners coped with the impact caused by the foot colliding with the ground before the invention of the modern shoe. Here we show that habitually barefoot endurance runners often land on the fore-foot (fore-foot strike) before bringing down the heel, but they sometimes land with a flat foot (mid-foot strike) or, less often, on the heel (rear-foot strike). In contrast, habitually shod runners mostly rear-foot strike, facilitated by the elevated and cushioned heel of the modern running shoe. Kinematic and kinetic analyses show that even on hard surfaces, barefoot runners who fore-foot strike generate smaller collision forces than shod rear-foot strikers. This difference results primarily from a more plantarflexed foot at landing and more ankle compliance during impact, decreasing the effective mass of the body that collides with the ground. Fore-foot- and mid-foot-strike gaits were probably more common when humans ran barefoot or in minimal shoes, and may protect the feet and lower limbs from some of the impact-related injuries now experienced by a high percentage of runners.
                Bookmark

                Author and article information

                Journal
                Orthopaedic Journal of Sports Medicine
                Orthopaedic Journal of Sports Medicine
                SAGE Publications
                2325-9671
                2325-9671
                June 01 2018
                June 07 2018
                June 01 2018
                : 6
                : 6
                : 232596711877572
                Affiliations
                [1 ]Program in Kinesiology, Oregon State University–Cascades, Bend, Oregon, USA.
                [2 ]School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA.
                Article
                10.1177/2325967118775720
                e6c31361-5b62-4e1e-9bb1-fad54851a604
                © 2018

                http://journals.sagepub.com/page/policies/text-and-data-mining-license

                History

                Comments

                Comment on this article