27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Volcanic Soils as Sources of Novel CO-Oxidizing Paraburkholderia and Burkholderia: Paraburkholderia hiiakae sp. nov., Paraburkholderia metrosideri sp. nov., Paraburkholderia paradisi sp. nov., Paraburkholderia peleae sp. nov., and Burkholderia alpina sp. nov. a Member of the Burkholderia cepacia Complex

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Previous studies showed that members of the Burkholderiales were important in the succession of aerobic, molybdenum-dependent CO oxidizing-bacteria on volcanic soils. During these studies, four isolates were obtained from Kilauea Volcano (Hawai‘i, USA); one strain was isolated from Pico de Orizaba (Mexico) during a separate study. Based on 16S rRNA gene sequence similarities, the Pico de Orizaba isolate and the isolates from Kilauea Volcano were provisionally assigned to the genera Burkholderia and Paraburkholderia, respectively. Each of the isolates possessed a form I coxL gene that encoded the catalytic subunit of carbon monoxide dehydrogenase (CODH); none of the most closely related type strains possessed coxL or oxidized CO. Genome sequences for Paraburkholderia type strains facilitated an analysis of 16S rRNA gene sequence similarities and average nucleotide identities (ANI). ANI did not exceed 95% (the recommended cutoff for species differentiation) for any of the pairwise comparisons among 27 reference strains related to the new isolates. However, since the highest 16S rRNA gene sequence similarity among this set of reference strains was 98.93%, DNA-DNA hybridizations (DDH) were performed for two isolates whose 16S rRNA gene sequence similarities with their nearest phylogenetic neighbors were 98.96 and 99.11%. In both cases DDH values were <16%. Based on multiple variables, four of the isolates represent novel species within the Paraburkholderia: Paraburkholderia hiiakae sp. nov. (type strain I2 T = DSM 28029 T = LMG 27952 T); Paraburkholderia paradisi sp. nov. (type strain WA T = DSM 28027 T = LMG 27949 T); Paraburkholderia peleae sp. nov. (type strain PP52-1 T = DSM 28028 T = LMG 27950 T); and Paraburkholderia metrosideri sp. nov. (type strain DNBP6-1 T = DSM 28030 T = LMG 28140 T). The remaining isolate represents the first CO-oxidizing member of the Burkholderia cepacia complex: Burkholderia alpina sp. nov. (type strain PO-04-17-38 T = DSM 28031 T = LMG 28138 T).

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species.

          Despite recent advances in commercially optimized identification systems, bacterial identification remains a challenging task in many routine microbiological laboratories, especially in situations where taxonomically novel isolates are involved. The 16S rRNA gene has been used extensively for this task when coupled with a well-curated database, such as EzTaxon, containing sequences of type strains of prokaryotic species with validly published names. Although the EzTaxon database has been widely used for routine identification of prokaryotic isolates, sequences from uncultured prokaryotes have not been considered. Here, the next generation database, named EzTaxon-e, is formally introduced. This new database covers not only species within the formal nomenclatural system but also phylotypes that may represent species in nature. In addition to an identification function based on Basic Local Alignment Search Tool (blast) searches and pairwise global sequence alignments, a new objective method of assessing the degree of completeness in sequencing is proposed. All sequences that are held in the EzTaxon-e database have been subjected to phylogenetic analysis and this has resulted in a complete hierarchical classification system. It is concluded that the EzTaxon-e database provides a useful taxonomic backbone for the identification of cultured and uncultured prokaryotes and offers a valuable means of communication among microbiologists who routinely encounter taxonomically novel isolates. The database and its analytical functions can be found at http://eztaxon-e.ezbiocloud.net/.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Precise Measurement of the G+C Content of Deoxyribonucleic Acid by High-Performance Liquid Chromatography

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species

              The genus Burkholderia contains large number of diverse species which include many clinically important organisms, phytopathogens, as well as environmental species. However, currently, there is a paucity of biochemical or molecular characteristics which can reliably distinguish different groups of Burkholderia species. We report here the results of detailed phylogenetic and comparative genomic analyses of 45 sequenced species of the genus Burkholderia. In phylogenetic trees based upon concatenated sequences for 21 conserved proteins as well as 16S rRNA gene sequence based trees, members of the genus Burkholderia grouped into two major clades. Within these main clades a number of smaller clades including those corresponding to the clinically important Burkholderia cepacia complex (BCC) and the Burkholderia pseudomallei groups were also clearly distinguished. Our comparative analysis of protein sequences from Burkholderia spp. has identified 42 highly specific molecular markers in the form of conserved sequence indels (CSIs) that are uniquely found in a number of well-defined groups of Burkholderia spp. Six of these CSIs are specific for a group of Burkholderia spp. (referred to as Clade I in this work) which contains all clinically relevant members of the genus (viz. the BCC and the B. pseudomallei group) as well as the phytopathogenic Burkholderia spp. The second main clade (Clade II), which is composed of environmental Burkholderia species, is also distinguished by 2 identified CSIs that are specific for this group. Additionally, our work has also identified multiple CSIs that serve to clearly demarcate a number of smaller groups of Burkholderia spp. including 3 CSIs that are specific for the B. cepacia complex, 4 CSIs that are uniquely found in the B. pseudomallei group, 5 CSIs that are specific for the phytopathogenic Burkholderia spp. and 22 other CSI that distinguish two groups within Clade II. The described molecular markers provide highly specific means for the demarcation of different groups of Burkholderia spp. and they also offer novel and useful targets for the development of diagnostic assays for the clinically important members of the BCC or the pseudomallei groups. Based upon the results of phylogenetic analyses, the identified CSIs and the pathogenicity profile of Burkholderia species, we are proposing a division of the genus Burkholderia into two genera. In this new proposal, the emended genus Burkholderia will correspond to the Clade I and it will contain only the clinically relevant and phytopathogenic Burkholderia species. All other Burkholderia spp., which are primarily environmental, will be transferred to a new genus Paraburkholderia gen. nov.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                21 February 2017
                2017
                : 8
                : 207
                Affiliations
                [1] 1Department of Biological Sciences, Louisiana State University Baton Rouge, LA, USA
                [2] 2College of Health Sciences, Des Moines University Des Moines, IA, USA
                Author notes

                Edited by: Svetlana N. Dedysh, Winogradsky Institute of Microbiology (RAS), Russia

                Reviewed by: Dimitry Y. Sorokin, The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Russia; Philippe Constant, INRS-Institut Armand-Frappier, Canada; Paulina Estrada De Los Santos, Instituto Politécnico Nacional, Mexico

                *Correspondence: Gary M. King gking@ 123456lsu.edu

                This article was submitted to Terrestrial Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2017.00207
                5318905
                e1476578-b2cf-4209-bf28-bd515dee9190
                Copyright © 2017 Weber and King.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 09 December 2016
                : 30 January 2017
                Page count
                Figures: 2, Tables: 2, Equations: 0, References: 53, Pages: 10, Words: 7542
                Funding
                Funded by: National Science Foundation 10.13039/100000001
                Award ID: MCB-0348100
                Award ID: DEB-1146444
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                burkholderia,carbon monoxide,paraburkholderia,volcanic soils
                Microbiology & Virology
                burkholderia, carbon monoxide, paraburkholderia, volcanic soils

                Comments

                Comment on this article