127
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Optimal medical therapy with or without PCI for stable coronary disease.

      The New England journal of medicine
      Adrenergic beta-Antagonists, therapeutic use, Aged, Angina Pectoris, therapy, Angioplasty, Balloon, Coronary, Angiotensin-Converting Enzyme Inhibitors, Anticholesteremic Agents, Antihypertensive Agents, Combined Modality Therapy, Coronary Disease, drug therapy, mortality, Drug Therapy, Combination, Female, Humans, Kaplan-Meier Estimate, Male, Middle Aged, Myocardial Infarction, epidemiology, prevention & control, Platelet Aggregation Inhibitors, Proportional Hazards Models, Risk Factors, Stroke

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In patients with stable coronary artery disease, it remains unclear whether an initial management strategy of percutaneous coronary intervention (PCI) with intensive pharmacologic therapy and lifestyle intervention (optimal medical therapy) is superior to optimal medical therapy alone in reducing the risk of cardiovascular events. We conducted a randomized trial involving 2287 patients who had objective evidence of myocardial ischemia and significant coronary artery disease at 50 U.S. and Canadian centers. Between 1999 and 2004, we assigned 1149 patients to undergo PCI with optimal medical therapy (PCI group) and 1138 to receive optimal medical therapy alone (medical-therapy group). The primary outcome was death from any cause and nonfatal myocardial infarction during a follow-up period of 2.5 to 7.0 years (median, 4.6). There were 211 primary events in the PCI group and 202 events in the medical-therapy group. The 4.6-year cumulative primary-event rates were 19.0% in the PCI group and 18.5% in the medical-therapy group (hazard ratio for the PCI group, 1.05; 95% confidence interval [CI], 0.87 to 1.27; P=0.62). There were no significant differences between the PCI group and the medical-therapy group in the composite of death, myocardial infarction, and stroke (20.0% vs. 19.5%; hazard ratio, 1.05; 95% CI, 0.87 to 1.27; P=0.62); hospitalization for acute coronary syndrome (12.4% vs. 11.8%; hazard ratio, 1.07; 95% CI, 0.84 to 1.37; P=0.56); or myocardial infarction (13.2% vs. 12.3%; hazard ratio, 1.13; 95% CI, 0.89 to 1.43; P=0.33). As an initial management strategy in patients with stable coronary artery disease, PCI did not reduce the risk of death, myocardial infarction, or other major cardiovascular events when added to optimal medical therapy. (ClinicalTrials.gov number, NCT00007657 [ClinicalTrials.gov].). Copyright 2007 Massachusetts Medical Society.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: a quantitative review of 23 randomised trials.

          Many trials have been done to compare primary percutaneous transluminal coronary angioplasty (PTCA) with thrombolytic therapy for acute ST-segment elevation myocardial infarction (AMI). Our aim was to look at the combined results of these trials and to ascertain which reperfusion therapy is most effective. We did a search of published work and identified 23 trials, which together randomly assigned 7739 thrombolytic-eligible patients with ST-segment elevation AMI to primary PTCA (n=3872) or thrombolytic therapy (n=3867). Streptokinase was used in eight trials (n=1837), and fibrin-specific agents in 15 (n=5902). Most patients who received thrombolytic therapy (76%, n=2939) received a fibrin-specific agent. Stents were used in 12 trials, and platelet glycoprotein IIb/IIIa inhibitors were used in eight. We identified short-term and long-term clinical outcomes of death, non-fatal reinfarction, and stroke, and did subgroup analyses to assess the effect of type of thrombolytic agent used and the strategy of emergent hospital transfer for primary PTCA. All analyses were done with and without inclusion of the SHOCK trial data. Primary PTCA was better than thrombolytic therapy at reducing overall short-term death (7% [n=270] vs 9% [360]; p=0.0002), death excluding the SHOCK trial data (5% [199] vs 7% [276]; p=0.0003), non-fatal reinfarction (3% [80] vs 7% [222]; p<0.0001), stroke (1% [30] vs 2% [64]; p=0.0004), and the combined endpoint of death, non-fatal reinfarction, and stroke (8% [253] vs 14% [442]; p<0.0001). The results seen with primary PTCA remained better than those seen with thrombolytic therapy during long-term follow-up, and were independent of both the type of thrombolytic agent used, and whether or not the patient was transferred for primary PTCA. Primary PTCA is more effective than thrombolytic therapy for the treatment of ST-segment elevation AMI.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Nonparametric Estimation from Incomplete Observations

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I.

              Atherosclerotic cardiovascular disease results in >19 million deaths annually, and coronary heart disease accounts for the majority of this toll. Despite major advances in treatment of coronary heart disease patients, a large number of victims of the disease who are apparently healthy die suddenly without prior symptoms. Available screening and diagnostic methods are insufficient to identify the victims before the event occurs. The recognition of the role of the vulnerable plaque has opened new avenues of opportunity in the field of cardiovascular medicine. This consensus document concludes the following. (1) Rupture-prone plaques are not the only vulnerable plaques. All types of atherosclerotic plaques with high likelihood of thrombotic complications and rapid progression should be considered as vulnerable plaques. We propose a classification for clinical as well as pathological evaluation of vulnerable plaques. (2) Vulnerable plaques are not the only culprit factors for the development of acute coronary syndromes, myocardial infarction, and sudden cardiac death. Vulnerable blood (prone to thrombosis) and vulnerable myocardium (prone to fatal arrhythmia) play an important role in the outcome. Therefore, the term "vulnerable patient" may be more appropriate and is proposed now for the identification of subjects with high likelihood of developing cardiac events in the near future. (3) A quantitative method for cumulative risk assessment of vulnerable patients needs to be developed that may include variables based on plaque, blood, and myocardial vulnerability. In Part I of this consensus document, we cover the new definition of vulnerable plaque and its relationship with vulnerable patients. Part II of this consensus document focuses on vulnerable blood and vulnerable myocardium and provide an outline of overall risk assessment of vulnerable patients. Parts I and II are meant to provide a general consensus and overviews the new field of vulnerable patient. Recently developed assays (eg, C-reactive protein), imaging techniques (eg, CT and MRI), noninvasive electrophysiological tests (for vulnerable myocardium), and emerging catheters (to localize and characterize vulnerable plaque) in combination with future genomic and proteomic techniques will guide us in the search for vulnerable patients. It will also lead to the development and deployment of new therapies and ultimately to reduce the incidence of acute coronary syndromes and sudden cardiac death. We encourage healthcare policy makers to promote translational research for screening and treatment of vulnerable patients.
                Bookmark

                Author and article information

                Comments

                Comment on this article