24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A Corepressor/Coactivator Exchange Complex Required for Transcriptional Activation by Nuclear Receptors and Other Regulated Transcription Factors

      Cell
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Transcription regulation and animal diversity.

          Whole-genome sequence assemblies are now available for seven different animals, including nematode worms, mice and humans. Comparative genome analyses reveal a surprising constancy in genetic content: vertebrate genomes have only about twice the number of genes that invertebrate genomes have, and the increase is primarily due to the duplication of existing genes rather than the invention of new ones. How, then, has evolutionary diversity arisen? Emerging evidence suggests that organismal complexity arises from progressively more elaborate regulation of gene expression.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Myc/Max/Mad network and the transcriptional control of cell behavior.

            The Myc/Max/Mad network comprises a group of transcription factors whose distinct interactions result in gene-specific transcriptional activation or repression. A great deal of research indicates that the functions of the network play roles in cell proliferation, differentiation, and death. In this review we focus on the Myc and Mad protein families and attempt to relate their biological functions to their transcriptional activities and gene targets. Both Myc and Mad, as well as the more recently described Mnt and Mga proteins, form heterodimers with Max, permitting binding to specific DNA sequences. These DNA-bound heterodimers recruit coactivator or corepressor complexes that generate alterations in chromatin structure, which in turn modulate transcription. Initial identification of target genes suggests that the network regulates genes involved in the cell cycle, growth, life span, and morphology. Because Myc and Mad proteins are expressed in response to diverse signaling pathways, the network can be viewed as a functional module which acts to convert environmental signals into specific gene-regulatory programs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A signature motif in transcriptional co-activators mediates binding to nuclear receptors.

              The binding of lipophilic hormones, retinoids and vitamins to members of the nuclear-receptor superfamily modifies the DNA-binding and transcriptional properties of these receptors, resulting in the activation or repression of target genes. Ligand binding induces conformational changes in nuclear receptors and promotes their association with a diverse group of nuclear proteins, including SRC-1/p160, TIF-2/GRIP-1 and CBP/p300 which function as co-activators of transcription, and RIP-140, TIF-1 and TRIP-1/SUG-1 whose functions are unclear. Here we report that a short sequence motif LXXLL (where L is leucine and X is any amino acid) present in RIP-140, SRC-1 and CBP is necessary and sufficient to mediate the binding of these proteins to liganded nuclear receptors. We show that the ability of SRC-1 to bind the oestrogen receptor and enhance its transcriptional activity is dependent upon the integrity of the LXXLL motifs and on key hydrophobic residues in a conserved helix (helix 12) of the oestrogen receptor that are required for its ligand-induced activation function. We propose that the LXXLL motif is a signature sequence that facilitates the interaction of different proteins with nuclear receptors, and is thus a defining feature of a new family of nuclear proteins.
                Bookmark

                Author and article information

                Journal
                10.1016/S0092-8674(04)00133-3
                http://www.elsevier.com/tdm/userlicense/1.0/

                Comments

                Comment on this article