19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Plasma technology for lignocellulosic biomass conversion toward an electrified biorefinery

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An overview of plasma technology for the electrified and sustainable conversion of lignocellulosic biomass.

          Abstract

          Lignocellulosic biomass conversion to renewable, carbon-neutral materials, fuels, and chemicals is the cornerstone of the transition to a sustainable future bioeconomy. Green energy in the form of electricity needs to be coupled with or substitute conventional thermally driven processes to realize small-scale, economically viable and environmentally friendly biorefineries. Gas discharge plasmas enable the conversion of renewable electric energy, supplied in the form of an electric field, to chemical energy through the formation of a highly reactive environment that can induce several transformations related to agricultural waste valorization processes. Herein, we review the application of plasma technology to lignocellulosic biomass upgrade, aiming to provide the scientific background and technical challenges in this rapidly emerging research field. To bridge the gap between plasma science and biomass valorization technologies, we initially present the technical aspects of plasma reactors related to biomass processing and further discuss the advances in plasma processing for each biomass conversion technology, providing insights into the related plasma chemistry and interaction mechanisms. We first focus on the low and medium-temperature biomass conversion processes, including biomass pretreatment and delignification to promote enzyme or acid-catalyzed hydrolysis to sugars and biomass liquefaction using plasma electrolysis. Then we discuss the high and very high-temperature conversion processes, such as plasma-assisted pyrolysis and gasification to syngas and plasma application to tar removal, combustion, and vitrification. Overall, this review provides knowledge at the interface of plasma science and biomass conversion technology to promote the interaction between the individual communities, which is crucial for the further advancement of the field.

          Related collections

          Most cited references315

          • Record: found
          • Abstract: not found
          • Article: not found

          Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Features of promising technologies for pretreatment of lignocellulosic biomass.

            N. Mosier (2005)
            Cellulosic plant material represents an as-of-yet untapped source of fermentable sugars for significant industrial use. Many physio-chemical structural and compositional factors hinder the enzymatic digestibility of cellulose present in lignocellulosic biomass. The goal of any pretreatment technology is to alter or remove structural and compositional impediments to hydrolysis in order to improve the rate of enzyme hydrolysis and increase yields of fermentable sugars from cellulose or hemicellulose. These methods cause physical and/or chemical changes in the plant biomass in order to achieve this result. Experimental investigation of physical changes and chemical reactions that occur during pretreatment is required for the development of effective and mechanistic models that can be used for the rational design of pretreatment processes. Furthermore, pretreatment processing conditions must be tailored to the specific chemical and structural composition of the various, and variable, sources of lignocellulosic biomass. This paper reviews process parameters and their fundamental modes of action for promising pretreatment methods.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found
              Is Open Access

              The role of renewable energy in the global energy transformation

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                GRCHFJ
                Green Chemistry
                Green Chem.
                Royal Society of Chemistry (RSC)
                1463-9262
                1463-9270
                April 04 2022
                2022
                : 24
                : 7
                : 2680-2721
                Affiliations
                [1 ]Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
                [2 ]Catalysis Center for Energy Innovation, Newark, DE 19716, USA
                [3 ]Laboratory for Chemical Technology, Ghent University, Tech Lane Ghent Science Park 125, Ghent, B-9052, Belgium
                [4 ]School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou 9, Athens, 15780, Greece
                Article
                10.1039/D1GC03436G
                968a518f-142d-40b5-9e84-cd1182ead3df
                © 2022

                http://rsc.li/journals-terms-of-use#chorus

                History

                Comments

                Comment on this article