1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Monocyte, a Maestro in the Tumor Microenvironment (TME) of Breast Cancer

      , ,
      Cancers
      MDPI AG

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Breast cancer (BC) is well-known for being a leading cause of death worldwide. It is classified molecularly into luminal A, luminal B HER2−, luminal B HER2+, HER2+, and triple-negative breast cancer (TNBC). These subtypes differ in their prognosis; thus, understanding the tumor microenvironment (TME) makes new treatment strategies possible. The TME contains populations that exhibit anti-tumorigenic actions such as tumor-associated eosinophils. Moreover, it contains pro-tumorigenic populations such as tumor-associated neutrophils (TANs), or monocyte-derived populations. The monocyte-derived populations are tumor-associated macrophages (TAMs) and MDSCs. Thus, a monocyte can be considered a maestro within the TME. Moreover, the expansion of monocytes in the TME depends on many factors such as the BC stage, the presence of macrophage colony-stimulating factor (M-CSF), and the presence of some chemoattractants. After expansion, monocytes can differentiate into pro-inflammatory populations such as M1 macrophages or anti-inflammatory populations such as M2 macrophages according to the nature of cytokines present in the TME. Differentiation to TAMs depends on various factors such as the BC subtype, the presence of anti-inflammatory cytokines, and epigenetic factors. Furthermore, TAMs and MDSCs not only have a role in tumor progression but also are key players in metastasis. Thus, understanding the monocytes further can introduce new target therapies.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

          This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular portraits of human breast tumours.

            Human breast tumours are diverse in their natural history and in their responsiveness to treatments. Variation in transcriptional programs accounts for much of the biological diversity of human cells and tumours. In each cell, signal transduction and regulatory systems transduce information from the cell's identity to its environmental status, thereby controlling the level of expression of every gene in the genome. Here we have characterized variation in gene expression patterns in a set of 65 surgical specimens of human breast tumours from 42 different individuals, using complementary DNA microarrays representing 8,102 human genes. These patterns provided a distinctive molecular portrait of each tumour. Twenty of the tumours were sampled twice, before and after a 16-week course of doxorubicin chemotherapy, and two tumours were paired with a lymph node metastasis from the same patient. Gene expression patterns in two tumour samples from the same individual were almost always more similar to each other than either was to any other sample. Sets of co-expressed genes were identified for which variation in messenger RNA levels could be related to specific features of physiological variation. The tumours could be classified into subtypes distinguished by pervasive differences in their gene expression patterns.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The transcriptional landscape of the mammalian genome.

              This study describes comprehensive polling of transcription start and termination sites and analysis of previously unidentified full-length complementary DNAs derived from the mouse genome. We identify the 5' and 3' boundaries of 181,047 transcripts with extensive variation in transcripts arising from alternative promoter usage, splicing, and polyadenylation. There are 16,247 new mouse protein-coding transcripts, including 5154 encoding previously unidentified proteins. Genomic mapping of the transcriptome reveals transcriptional forests, with overlapping transcription on both strands, separated by deserts in which few transcripts are observed. The data provide a comprehensive platform for the comparative analysis of mammalian transcriptional regulation in differentiation and development.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                CANCCT
                Cancers
                Cancers
                MDPI AG
                2072-6694
                November 2022
                November 07 2022
                : 14
                : 21
                : 5460
                Article
                10.3390/cancers14215460
                4317e2d5-fee4-4945-918e-c77cb356d8c9
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article