33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The golgin protein Coy1 functions in intra-Golgi retrograde transport and interacts with the COG complex and Golgi SNAREs

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Yeast Coy1 and its human homologue CASP belong to the golgin family of extended coiled-coil proteins that underlie the structure and function of the Golgi complex. Here Coy1 is shown to operate in intra-Golgi retrograde transport through direct interactions with the COG complex and specific Golgi SNARE proteins.

          Abstract

          Extended coiled-coil proteins of the golgin family play prominent roles in maintaining the structure and function of the Golgi complex. Here we further investigate the golgin protein Coy1 and document its function in retrograde transport between early Golgi compartments. Cells that lack Coy1 displayed a reduced half-life of the Och1 mannosyltransferase, an established cargo of intra-Golgi retrograde transport. Combining the coy1Δ mutation with deletions in other putative retrograde golgins ( sgm1Δ and rud3Δ) caused strong glycosylation and growth defects and reduced membrane association of the conserved oligomeric Golgi (COG) complex. In contrast, overexpression of COY1 inhibited the growth of mutant strains deficient in fusion activity at the Golgi ( sed5-1 and sly1-ts). To map Coy1 protein interactions, coimmunoprecipitation experiments revealed an association with the COG complex and with intra-Golgi SNARE proteins. These physical interactions are direct, as Coy1 was efficiently captured in vitro by Lobe A of the COG complex and the purified SNARE proteins Gos1, Sed5, and Sft1. Thus our genetic, in vivo, and biochemical data indicate a role for Coy1 in regulating COG complex-dependent fusion of retrograde-directed COPI vesicles.

          Related collections

          Most cited references96

          • Record: found
          • Abstract: found
          • Article: not found

          Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution.

          To explore the mechanisms and evolution of cell-cycle control, we analyzed the position and conservation of large numbers of phosphorylation sites for the cyclin-dependent kinase Cdk1 in the budding yeast Saccharomyces cerevisiae. We combined specific chemical inhibition of Cdk1 with quantitative mass spectrometry to identify the positions of 547 phosphorylation sites on 308 Cdk1 substrates in vivo. Comparisons of these substrates with orthologs throughout the ascomycete lineage revealed that the position of most phosphorylation sites is not conserved in evolution; instead, clusters of sites shift position in rapidly evolving disordered regions. We propose that the regulation of protein function by phosphorylation often depends on simple nonspecific mechanisms that disrupt or enhance protein-protein interactions. The gain or loss of phosphorylation sites in rapidly evolving regions could facilitate the evolution of kinase-signaling circuits.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transformation of intact yeast cells treated with alkali cations.

            Intact yeast cells treated with alkali cations took up plasmid DNA. Li+, Cs+, Rb+, K+, and Na+ were effective in inducing competence. Conditions for the transformation of Saccharomyces cerevisiae D13-1A with plasmid YRp7 were studied in detail with CsCl. The optimum incubation time was 1 h, and the optimum cell concentration was 5 x 10(7) cells per ml. The optimum concentration of Cs+ was 1.0 M. Transformation efficiency increased with increasing concentrations of plasmid DNA. Polyethylene glycol was absolutely required. Heat pulse and various polyamines or basic proteins stimulated the uptake of plasmid DNA. Besides circular DNA, linear plasmid DNA was also taken up by Cs+-treated yeast cells, although the uptake efficiency was considerably reduced. The transformation efficiency with Cs+ or Li+ was comparable with that of conventional protoplast methods for a plasmid containing ars1, although not for plasmids containing a 2 microns origin replication.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum.

              In vitro synthesis of endoplasmic reticulum-derived transport vesicles has been reconstituted with washed membranes and three soluble proteins (Sar1p, Sec13p complex, and Sec23p complex). Vesicle formation requires GTP but can be driven by nonhydrolyzable analogs such as GMP-PNP. However, GMP-PNP vesicles fail to target and fuse with the Golgi complex whereas GTP vesicles are functional. All the cytosolic proteins required for vesicle formation are retained on GMP-PNP vesicles, while Sar1p dissociates from GTP vesicles. Thin section electron microscopy of purified preparations reveals a uniform population of 60-65 nm vesicles with a 10 nm thick electron dense coat. The subunits of this novel coat complex are molecularly distinct from the constituents of the nonclathrin coatomer involved in intra-Golgi transport. Because the overall cycle of budding driven by these two types of coats appears mechanistically similar, we propose that the coat structures be called COPI and COPII.
                Bookmark

                Author and article information

                Contributors
                Role: Monitoring Editor
                Journal
                Mol Biol Cell
                Mol. Biol. Cell
                molbiolcell
                mbc
                Mol. Bio. Cell
                Molecular Biology of the Cell
                The American Society for Cell Biology
                1059-1524
                1939-4586
                01 October 2017
                : 28
                : 20
                : 2686-2700
                Affiliations
                [1]Department of Biochemistry & Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
                RIKEN
                Author notes
                *Address correspondence to: Charles Barlowe ( charles.barlowe@ 123456dartmouth.edu ).
                Article
                E17-03-0137
                10.1091/mbc.E17-03-0137
                5620376
                28794270
                25ccaccb-6ce9-46c3-9dfe-f41d46bdc67c
                © 2017 Anderson et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( http://creativecommons.org/licenses/by-nc-sa/3.0).

                “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society for Cell Biology.

                History
                : 03 March 2017
                : 12 July 2017
                : 31 July 2017
                Categories
                Articles
                Membrane Trafficking

                Molecular biology
                Molecular biology

                Comments

                Comment on this article