Using sheep thyroid cells in culture, we have studied the effects of thyroid stimulating hormone (TSH), epidermal growth factor (EGF) and the tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA) on the activity and expression of both thyroglobulin (Tg) and thyroid peroxidase (TPO) and on the ability of cells to trap and organify iodide. Using Western blotting techniques, we found that TSH increased the absolute cellular levels of Tg. The optimum TSH concentration for Tg mRNA production was between 0.1-1.0 mU/ml. Thyroglobulin mRNA levels were stimulated by TSH but detectable levels were also present in cultures grown in its absence containing cortisol, insulin, transferrin, somatostatin and glycyl-lysyl-histidyl acetate. Unlike Tg, TPO protein levels were found to be completely dependent upon TSH. A time course of TSH stimulation of TPO mRNA showed increases after 8 h of TSH stimulation, whereas induction of Tg mRNA by TSH was seen at 24 h. Iodide trapping and organification were also TSH-dependent processes, showing maximum activities at 300-500 muU/ml of TSH. The addition of 10 nM TPA caused a biphasic decrease in radiolabeled pertechnetate uptake, with complete inhibition being seen at 14 h. Inhibition of iodide organification occurred more rapidly. TPA and EGF (1 nM) reduced the amount of newly synthesized Tg in TSH-stimulated cells by 50% but the absolute amount of Tg within the cells was not markedly inhibited at these early times.(ABSTRACT TRUNCATED AT 250 WORDS)