4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Design and development of chitosan-insulin-transfersomes (Transfersulin) as effective intranasal nanovesicles for the treatment of Alzheimer's disease: In vitro, in vivo, and ex vivo evaluations.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study aimed to prepare and characterize chitosan-Transfersulin (CTI) as an effective intranasal drug delivery system (IDDS) for the treatment of memory disorders by mediating insulin (INS) transport into the brain. Tween 80 was used as an edge activator and chitosan (CS) to increase the elasticity of CTI. CTI nanovesicles were prepared by the film hydration method and characterized after optimization. Optimal values of particle size, polydispersity index, zeta potential, encapsulation efficiency, and drug loading were found to be 137.9 ± 28.2 nm, 0.20, + 23.4 mV, 65.1 ± 0.9 %, and 9.1 ± 0.4 %, respectively. The TEM image supported these findings. FTIR and TGA also demonstrated suitable entrapment of INS in CTI without any chemical interaction. The circular dichroism and fluorescence spectroscopy results confirmed INS's stability and structural integrity released from the CTI. The nasal uptake of INS loaded into CTI was confirmed by optical fluorescence imaging. Histological inspections of the hippocampus also confirmed the results of the behavioral tests. In conclusion, these nanoformulations exhibited greater neuroprotective effects on rats via increased intracellular drug uptake and sustained retention, and it appears to be a promising and effective IDDS for treating Alzheimer's disease (AD).

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums

          Considerable overlap has been identified in the risk factors, comorbidities and putative pathophysiological mechanisms of Alzheimer disease and related dementias (ADRDs) and type 2 diabetes mellitus (T2DM), two of the most pressing epidemics of our time. Much is known about the biology of each condition, but whether T2DM and ADRDs are parallel phenomena arising from coincidental roots in ageing or synergistic diseases linked by vicious pathophysiological cycles remains unclear. Insulin resistance is a core feature of T2DM and is emerging as a potentially important feature of ADRDs. Here, we review key observations and experimental data on insulin signalling in the brain, highlighting its actions in neurons and glia. In addition, we define the concept of 'brain insulin resistance' and review the growing, although still inconsistent, literature concerning cognitive impairment and neuropathological abnormalities in T2DM, obesity and insulin resistance. Lastly, we review evidence of intrinsic brain insulin resistance in ADRDs. By expanding our understanding of the overlapping mechanisms of these conditions, we hope to accelerate the rational development of preventive, disease-modifying and symptomatic treatments for cognitive dysfunction in T2DM and ADRDs alike.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues.

            Mucus is a viscoelastic and adhesive gel that protects the lung airways, gastrointestinal (GI) tract, vagina, eye and other mucosal surfaces. Most foreign particulates, including conventional particle-based drug delivery systems, are efficiently trapped in human mucus layers by steric obstruction and/or adhesion. Trapped particles are typically removed from the mucosal tissue within seconds to a few hours depending on anatomical location, thereby strongly limiting the duration of sustained drug delivery locally. A number of debilitating diseases could be treated more effectively and with fewer side effects if drugs and genes could be more efficiently delivered to the underlying mucosal tissues in a controlled manner. This review first describes the tenacious mucus barrier properties that have precluded the efficient penetration of therapeutic particles. It then reviews the design and development of new mucus-penetrating particles that may avoid rapid mucus clearance mechanisms, and thereby provide targeted or sustained drug delivery for localized therapies in mucosal tissues.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Brain insulin resistance in Alzheimer's disease and related disorders: mechanisms and therapeutic approaches

              Insulin is a peptide secreted by the pancreas and plays an important role in the regulation of glucose metabolism in peripheral tissues. Although the role of insulin in the periphery is well understood, less is known about its multifactorial role in the brain. However, emerging evidence from human and animal studies indicate that insulin influences cerebral bioenergetics, enhances synaptic viability and dendritic spine formation, and increases turnover of neurotransmitters, such as dopamine. Insulin also has a role in proteostasis, influencing clearance of the amyloid β peptide and phosphorylation of tau, which are hallmarks of Alzheimer's disease. Insulin also modulates vascular function through effects on vasoreactivity, lipid metabolism, and inflammation. Through these multiple pathways, insulin dysregulation could contribute to neurodegeneration. Thus, new approaches to restore cerebral insulin function that could offer therapeutic benefit to adults with Alzheimer's disease, vascular cognitive impairment, or related disorders are being investigated.
                Bookmark

                Author and article information

                Journal
                Biomed Pharmacother
                Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie
                Elsevier BV
                1950-6007
                0753-3322
                Sep 2022
                : 153
                Affiliations
                [1 ] Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran.
                [2 ] Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran. Electronic address: bahman.ebrahimi@ut.ac.ir.
                [3 ] Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
                [4 ] Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Nursing, Khoy University of Medical Sciences, Khoy, Iran.
                Article
                S0753-3322(22)00839-3
                10.1016/j.biopha.2022.113450
                36076565
                5b57db97-a40f-40bb-813f-71a46e430029
                History

                Alzheimer’s disease,Transfersomes,Intranasal drug delivery,Insulin,Chitosan

                Comments

                Comment on this article