119
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Senescence and aging: Causes, consequences, and therapeutic avenues

      review-article
      1 , 2 , 1 , 2 ,
      The Journal of Cell Biology
      The Rockefeller University Press

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          McHugh and Gil review the role of senescence in age-related diseases and how targeting senescence may improve health span and extend life span.

          Abstract

          Aging is the major risk factor for cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. Although we are far from understanding the biological basis of aging, research suggests that targeting the aging process itself could ameliorate many age-related pathologies. Senescence is a cellular response characterized by a stable growth arrest and other phenotypic alterations that include a proinflammatory secretome. Senescence plays roles in normal development, maintains tissue homeostasis, and limits tumor progression. However, senescence has also been implicated as a major cause of age-related disease. In this regard, recent experimental evidence has shown that the genetic or pharmacological ablation of senescent cells extends life span and improves health span. Here, we review the cellular and molecular links between cellular senescence and aging and discuss the novel therapeutic avenues that this connection opens.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas.

          Although cancer arises from a combination of mutations in oncogenes and tumour suppressor genes, the extent to which tumour suppressor gene loss is required for maintaining established tumours is poorly understood. p53 is an important tumour suppressor that acts to restrict proliferation in response to DNA damage or deregulation of mitogenic oncogenes, by leading to the induction of various cell cycle checkpoints, apoptosis or cellular senescence. Consequently, p53 mutations increase cell proliferation and survival, and in some settings promote genomic instability and resistance to certain chemotherapies. To determine the consequences of reactivating the p53 pathway in tumours, we used RNA interference (RNAi) to conditionally regulate endogenous p53 expression in a mosaic mouse model of liver carcinoma. We show that even brief reactivation of endogenous p53 in p53-deficient tumours can produce complete tumour regressions. The primary response to p53 was not apoptosis, but instead involved the induction of a cellular senescence program that was associated with differentiation and the upregulation of inflammatory cytokines. This program, although producing only cell cycle arrest in vitro, also triggered an innate immune response that targeted the tumour cells in vivo, thereby contributing to tumour clearance. Our study indicates that p53 loss can be required for the maintenance of aggressive carcinomas, and illustrates how the cellular senescence program can act together with the innate immune system to potently limit tumour growth.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Persistent DNA damage signaling triggers senescence-associated inflammatory cytokine secretion

            Cellular senescence suppresses cancer by stably arresting the proliferation of damaged cells1. Paradoxically, senescent cells also secrete factors that alter tissue microenvironments2. The pathways regulating this secretion are unknown. We show that damaged human cells develop persistent chromatin lesions bearing hallmarks of DNA double-strand breaks (DSBs), which initiate increased secretion of inflammatory cytokines such as interleukin-6 (IL-6). Cytokine secretion occurred only after establishment of persistent DNA damage signaling, usually associated with senescence, not after transient DNA damage responses (DDR). Initiation and maintenance of this cytokine response required the DDR proteins ATM, NBS1 and CHK2, but not the cell cycle arrest enforcers p53 and pRb. ATM was also essential for IL-6 secretion during oncogene-induced senescence and by damaged cells that bypass senescence. Further, DDR activity and IL-6 were elevated in human cancers, and ATM-depletion suppressed the ability of senescent cells to stimulate IL-6-dependent cancer cell invasiveness. Thus, in addition to orchestrating cell cycle checkpoints and DNA repair, a novel and important role of the DDR is to allow damaged cells to communicate their compromised state to the surrounding tissue.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chemokine signaling via the CXCR2 receptor reinforces senescence.

              Cells enter senescence, a state of stable proliferative arrest, in response to a variety of cellular stresses, including telomere erosion, DNA damage, and oncogenic signaling, which acts as a barrier against malignant transformation in vivo. To identify genes controlling senescence, we conducted an unbiased screen for small hairpin RNAs that extend the life span of primary human fibroblasts. Here, we report that knocking down the chemokine receptor CXCR2 (IL8RB) alleviates both replicative and oncogene-induced senescence (OIS) and diminishes the DNA-damage response. Conversely, ectopic expression of CXCR2 results in premature senescence via a p53-dependent mechanism. Cells undergoing OIS secrete multiple CXCR2-binding chemokines in a program that is regulated by the NF-kappaB and C/EBPbeta transcription factors and coordinately induce CXCR2 expression. CXCR2 upregulation is also observed in preneoplastic lesions in vivo. These results suggest that senescent cells activate a self-amplifying secretory network in which CXCR2-binding chemokines reinforce growth arrest.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                J. Cell Biol
                jcb
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                2 January 2018
                : 217
                : 1
                : 65-77
                Affiliations
                [1 ]Medical Research Council London Institute of Medical Sciences, London, England, UK
                [2 ]Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, England, UK
                Author notes
                Correspondence to Jesús Gil: jesus.gil@ 123456imperial.ac.uk
                Author information
                http://orcid.org/0000-0002-4303-6260
                Article
                201708092
                10.1083/jcb.201708092
                5748990
                29114066
                ccbba430-7284-4d36-9f7c-cb17c763dc48
                © 2018 McHugh and Gil

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).

                History
                : 14 August 2017
                : 09 October 2017
                : 17 October 2017
                Funding
                Funded by: Medical Research Council, DOI https://doi.org/10.13039/501100000265;
                Award ID: MC-A652-5PZ00
                Award ID: MC_U120085810
                Funded by: Unity Biotechnology
                Categories
                Reviews
                Review

                Cell biology
                Cell biology

                Comments

                Comment on this article