721
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A mutation in the c-fos gene associated with congenital generalized lipodystrophy.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Congenital generalized lipodystrophy (CGL) or Berardinelli-Seip congenital lipodystrophy (BSCL) is a rare genetic syndrome characterized by the absence of adipose tissue. As CGL is thought to be related to malfunctions in adipocyte development, genes involved in the mechanisms of adipocyte biology and maintenance or differentiation of adipocytes, especially transcription factors are candidates. Several genes (BSCL1-4) were found to be associated to the syndrome but not all CGL patients carry mutations in these genes.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of transcription by MAP kinase cascades.

          Kinases belonging to the mitogen-activated protein kinase (MAPK) family are used throughout evolution to control the cellular responses to external signals such as growth factors, nutrient status, stress or inductive signals. Many important substrates for MAPKs are transcription factors, and both the genetic and the biochemical links between MAPKs and transcription factors are becoming increasingly well understood.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bone and haematopoietic defects in mice lacking c-fos.

            The proto-oncogene c-fos is the cellular homologue of v-fos originally isolated from murine osteosarcoma. Fos protein is a major component of the AP-1 transcription factor complex, which includes members of the jun family. Stable expression of c-fos in mice has been demonstrated in developing bones and teeth, haematopoietic cells, germ cells and in the central nervous system. It has been proposed that c-fos has an important role in signal transduction, cell proliferation and differentiation. We have previously demonstrated that overexpression of c-fos in transgenic and chimaeric mice specifically affects bone, cartilage and haematopoietic cell development. To understand better the function of c-fos in vivo, we used gene targeting in embryonic stem cells to generate cells and mice lacking c-fos. Here we report that heterozygous fos +/- mice appear normal, although females exhibit a distorted transmission frequency. All homozygous fos -/- mice are growth-retarded, develop osteopetrosis with deficiencies in bone remodelling and tooth eruption, and have altered haematopoiesis. These data define the c-Fos protein as an essential molecule for the development of specific cellular compartments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene.

              Twenty-four base pairs of the human antioxidant response element (hARE) are required for high basal transcription of the NAD(P)H:quinone oxidoreductase1 (NQO1) gene and its induction in response to xenobiotics and antioxidants. hARE is a unique cis-element that contains one perfect and one imperfect AP1 element arranged as inverse repeats separated by 3 bp, followed by a "GC" box. We report here that Jun, Fos, Fra, and Nrf nuclear transcription factors bind to the hARE. Overexpression of cDNA derived combinations of the nuclear proteins Jun and Fos or Jun and Fra1 repressed hARE-mediated chloramphenicol acetyltransferase (CAT) gene expression in transfected human hepatoblastoma (Hep-G2) cells. Further experiments suggested that this repression was due to overexpression of c-Fos and Fra1, but not due to Jun proteins. The Jun (c-Jun, Jun-B, and Jun-D) proteins in all the possible combinations were more or less ineffective in repression or upregulation of hARE-mediated gene expression. Interestingly, overexpression of Nrf1 and Nrf2 individually in Hep-G2 and monkey kidney (COS1) cells significantly increased CAT gene expression from reporter plasmid hARE-thymidine kinase-CAT in transfected cells that were inducible by beta-naphthoflavone and teri-butyl hydroquinone. These results indicated that hARE-mediated expression of the NQO1 gene and its induction by xenobiotics and antioxidants are mediated by Nrf1 and Nrf2. The hARE-mediated basal expression, however, is repressed by overexpression of c-Fos and Fra1.
                Bookmark

                Author and article information

                Journal
                Orphanet J Rare Dis
                Orphanet journal of rare diseases
                Springer Science and Business Media LLC
                1750-1172
                1750-1172
                Aug 07 2013
                : 8
                Affiliations
                [1 ] Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, Duesseldorf, Germany.
                Article
                1750-1172-8-119
                10.1186/1750-1172-8-119
                3750569
                23919306
                4730ad33-94ec-4097-9755-13c24b9a07ed
                History

                Comments

                Comment on this article