67
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Carcinogenic human papillomavirus infection.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Infections with human papillomavirus (HPV) are common and transmitted by direct contact. Although the great majority of infections resolve within 2 years, 13 phylogenetically related, sexually transmitted HPV genotypes, notably HPV16, cause - if not controlled immunologically or by screening - virtually all cervical cancers worldwide, a large fraction of other anogenital cancers and an increasing proportion of oropharyngeal cancers. The carcinogenicity of these HPV types results primarily from the activity of the oncoproteins E6 and E7, which impair growth regulatory pathways. Persistent high-risk HPVs can transition from a productive (virion-producing) to an abortive or transforming infection, after which cancer can result after typically slow accumulation of host genetic mutations. However, which precancerous lesions progress and which do not is unclear; the majority of screening-detected precancers are treated, leading to overtreatment. The discovery of HPV as a carcinogen led to the development of effective preventive vaccines and sensitive HPV DNA and RNA tests. Together, vaccination programmes (the ultimate long-term preventive strategy) and screening using HPV tests could dramatically alter the landscape of HPV-related cancers. HPV testing will probably replace cytology-based cervical screening owing to greater reassurance when the test is negative. However, the effective implementation of HPV vaccination and screening globally remains a challenge.

          Related collections

          Most cited references143

          • Record: found
          • Abstract: found
          • Article: not found

          Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1.

          Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. To explore the genetic origins of this cancer, we used whole-exome sequencing and gene copy number analyses to study 32 primary tumors. Tumors from patients with a history of tobacco use had more mutations than did tumors from patients who did not use tobacco, and tumors that were negative for human papillomavirus (HPV) had more mutations than did HPV-positive tumors. Six of the genes that were mutated in multiple tumors were assessed in up to 88 additional HNSCCs. In addition to previously described mutations in TP53, CDKN2A, PIK3CA, and HRAS, we identified mutations in FBXW7 and NOTCH1. Nearly 40% of the 28 mutations identified in NOTCH1 were predicted to truncate the gene product, suggesting that NOTCH1 may function as a tumor suppressor gene rather than an oncogene in this tumor type.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Improved survival with bevacizumab in advanced cervical cancer.

            Vascular endothelial growth factor (VEGF) promotes angiogenesis, a mediator of disease progression in cervical cancer. Bevacizumab, a humanized anti-VEGF monoclonal antibody, has single-agent activity in previously treated, recurrent disease. Most patients in whom recurrent cervical cancer develops have previously received cisplatin with radiation therapy, which reduces the effectiveness of cisplatin at the time of recurrence. We evaluated the effectiveness of bevacizumab and nonplatinum combination chemotherapy in patients with recurrent, persistent, or metastatic cervical cancer. Using a 2-by-2 factorial design, we randomly assigned 452 patients to chemotherapy with or without bevacizumab at a dose of 15 mg per kilogram of body weight. Chemotherapy consisted of cisplatin at a dose of 50 mg per square meter of body-surface area, plus paclitaxel at a dose of 135 or 175 mg per square meter or topotecan at a dose of 0.75 mg per square meter on days 1 to 3, plus paclitaxel at a dose of 175 mg per square meter on day 1. Cycles were repeated every 21 days until disease progression, the development of unacceptable toxic effects, or a complete response was documented. The primary end point was overall survival; a reduction of 30% in the hazard ratio for death was considered clinically important. Groups were well balanced with respect to age, histologic findings, performance status, previous use or nonuse of a radiosensitizing platinum agent, and disease status. Topotecan-paclitaxel was not superior to cisplatin-paclitaxel (hazard ratio for death, 1.20). With the data for the two chemotherapy regimens combined, the addition of bevacizumab to chemotherapy was associated with increased overall survival (17.0 months vs. 13.3 months; hazard ratio for death, 0.71; 98% confidence interval, 0.54 to 0.95; P=0.004 in a one-sided test) and higher response rates (48% vs. 36%, P=0.008). Bevacizumab, as compared with chemotherapy alone, was associated with an increased incidence of hypertension of grade 2 or higher (25% vs. 2%), thromboembolic events of grade 3 or higher (8% vs. 1%), and gastrointestinal fistulas of grade 3 or higher (3% vs. 0%). The addition of bevacizumab to combination chemotherapy in patients with recurrent, persistent, or metastatic cervical cancer was associated with an improvement of 3.7 months in median overall survival. (Funded by the National Cancer Institute; GOG 240 ClinicalTrials.gov number, NCT00803062.).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human papillomavirus and cervical cancer.

              Cervical cancer is caused by human papillomavirus infection. Most human papillomavirus infection is harmless and clears spontaneously but persistent infection with high-risk human papillomavirus (especially type 16) can cause cancer of the cervix, vulva, vagina, anus, penis, and oropharynx. The virus exclusively infects epithelium and produces new viral particles only in fully mature epithelial cells. Human papillomavirus disrupts normal cell-cycle control, promoting uncontrolled cell division and the accumulation of genetic damage. Two effective prophylactic vaccines composed of human papillomavirus type 16 and 18, and human papillomavirus type 16, 18, 6, and 11 virus-like particles have been introduced in many developed countries as a primary prevention strategy. Human papillomavirus testing is clinically valuable for secondary prevention in triaging low-grade cytology and as a test of cure after treatment. More sensitive than cytology, primary screening by human papillomavirus testing could enable screening intervals to be extended. If these prevention strategies can be implemented in developing countries, many thousands of lives could be saved. Copyright © 2013 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Nat Rev Dis Primers
                Nature reviews. Disease primers
                Springer Nature
                2056-676X
                2056-676X
                December 01 2016
                : 2
                Affiliations
                [1 ] National Cancer Institute, Division of Cancer Epidemiology and Genetics, Room 6E544, 9609 Medical Center Drive, Rockville, Maryland 20850, USA.
                [2 ] Department of Pathology, University of Cambridge, Cambridge, UK.
                [3 ] Catalan Institute of Oncology, IDIBELL, Cancer Epidemiology Research Programme and CIBER Epidemiologia Y Salud Publica, Barcelona, Spain.
                [4 ] Department of Otolaryngology, Johns Hopkins Medicine, Baltimore, Maryland, USA.
                [5 ] Division of Gynecologic Oncology, US Oncology Network, University of Arizona-Phoenix, Phoenix, Arizona, USA.
                [6 ] International Agency for Research on Cancer, Infections and Cancer Epidemiology Group, Lyon, France.
                Article
                nrdp201686
                10.1038/nrdp.2016.86
                27905473
                fdd73330-14de-403b-9d7f-4d13e6ac2834
                History

                Comments

                Comment on this article