54
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Current Challenges of Cancer Anti-angiogenic Therapy and the Promise of Nanotherapeutics

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          With growing interest in cancer therapeutics, anti-angiogenic therapy has received considerable attention and is widely administered in several types of human cancers. Nonetheless, this type of therapy may induce multiple signaling pathways compared with cytotoxics and lead to worse outcomes in terms of resistance, invasion, metastasis, and overall survival (OS). Moreover, there are important challenges that limit the translation of promising biomarkers into clinical practice to monitor the efficiency of anti-angiogenic therapy. These pitfalls emphasize the urgent need for discovering alternative angiogenic inhibitors that target multiple angiogenic factors or developing a new drug delivery system for the current inhibitors. The great advantages of nanoparticles are their ability to offer effective routes that target the biological system and regulate different vital processes based on their unique features. Limited studies so far have addressed the effectiveness of nanoparticles in the normalization of the delicate balance between stimulating (pro-angiogenic) and inhibiting (anti-angiogenic) factors. In this review, we shed light on tumor vessels and their microenvironment and consider the current directions of anti-angiogenic and nanotherapeutic treatments. To the best of our knowledge, we consider an important effort in the understanding of anti-angiogenic agents (often a small volume of metals, nonmetallic molecules, or polymers) that can control the growth of new vessels.

          Related collections

          Most cited references133

          • Record: found
          • Abstract: found
          • Article: not found

          Drug resistance and the solid tumor microenvironment.

          Resistance of human tumors to anticancer drugs is most often ascribed to gene mutations, gene amplification, or epigenetic changes that influence the uptake, metabolism, or export of drugs from single cells. Another important yet little-appreciated cause of anticancer drug resistance is the limited ability of drugs to penetrate tumor tissue and to reach all of the tumor cells in a potentially lethal concentration. To reach all viable cells in the tumor, anticancer drugs must be delivered efficiently through the tumor vasculature, cross the vessel wall, and traverse the tumor tissue. In addition, heterogeneity within the tumor microenvironment leads to marked gradients in the rate of cell proliferation and to regions of hypoxia and acidity, all of which can influence the sensitivity of the tumor cells to drug treatment. In this review, we describe how the tumor microenvironment may be involved in the resistance of solid tumors to chemotherapy and discuss potential strategies to improve the effectiveness of drug treatment by modifying factors relating to the tumor microenvironment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nanoparticle delivery of cancer drugs.

            Nanomedicine, the application of nanotechnology to medicine, enabled the development of nanoparticle therapeutic carriers. These drug carriers are passively targeted to tumors through the enhanced permeability and retention effect, so they are ideally suited for the delivery of chemotherapeutics in cancer treatment. Indeed, advances in nanomedicine have rapidly translated into clinical practice. To date, there are five clinically approved nanoparticle chemotherapeutics for cancer and many more under clinical investigation. In this review, we discuss the various nanoparticle drug delivery platforms and the important concepts involved in nanoparticle drug delivery. We also review the clinical data on the approved nanoparticle therapeutics as well as the nanotherapeutics under clinical investigation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer.

              Mutations in the tumor-suppressor gene VHL cause oversecretion of vascular endothelial growth factor by clear-cell renal carcinomas. We conducted a clinical trial to evaluate bevacizumab, a neutralizing antibody against vascular endothelial growth factor, in patients with metastatic renal-cell carcinoma. A randomized, double-blind, phase 2 trial was conducted comparing placebo with bevacizumab at doses of 3 and 10 mg per kilogram of body weight, given every two weeks; the time to progression of disease and the response rate were primary end points. Crossover from placebo to antibody treatment was allowed, and survival was a secondary end point. Minimal toxic effects were seen, with hypertension and asymptomatic proteinuria predominating. The trial was stopped after the interim analysis met the criteria for early stopping. With 116 patients randomly assigned to treatment groups (40 to placebo, 37 to low-dose antibody, and 39 to high-dose antibody), there was a significant prolongation of the time to progression of disease in the high-dose--antibody group as compared with the placebo group (hazard ratio, 2.55; P 0.20 for all comparisons). Bevacizumab can significantly prolong the time to progression of disease in patients with metastatic renal-cell cancer. Copyright 2003 Massachusetts Medical Society
                Bookmark

                Author and article information

                Journal
                Theranostics
                Theranostics
                thno
                Theranostics
                Ivyspring International Publisher (Sydney )
                1838-7640
                2018
                1 January 2018
                : 8
                : 2
                : 533-548
                Affiliations
                [1 ]Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
                [2 ]Department of Biochemistry, College of Applied Science, University of Bahri, Khartoum 1660/11111, Sudan;
                [3 ]Department of Vascular Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China;
                [4 ]Department of Vascular Surgery, Fuwai Hospital, Beijing 100037, China;
                [5 ]National Engineering Research Centre for Nano-Medicine, Huazhong University of Science and Technology, Wuhan 430074, China.
                Author notes
                ✉ Corresponding author: E-mail: yang_sunny@ 123456yahoo.com Tel: +86 27-87793523 Fax: +86 27-87792265

                * These authors contributed equally.

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                thnov08p0533
                10.7150/thno.21674
                5743565
                29290825
                fabd5bf8-1b87-4d27-9fd9-1d05c1f85356
                © Ivyspring International Publisher

                This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license ( https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 28 June 2017
                : 28 September 2017
                Categories
                Review

                Molecular medicine
                cancer,tumor vessels,tumor microenvironment,anti-angiogenic agents,nanotherapeutics,drug resistance,biomarkers,metastasis.

                Comments

                Comment on this article