33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Crystal structure of human histone lysine-specific demethylase 1 (LSD1)

      , , , , , ,
      Proceedings of the National Academy of Sciences
      Proceedings of the National Academy of Sciences

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lysine-specific demethylase 1 (LSD1) was recently identified as the first histone demethylase that specifically demethylates monomethylated and dimethylated histone H3 at K4. It is a component of the CoREST and other corepressor complexes and plays an important role in silencing neuronal-specific genes in nonneuronal cells, but the molecular mechanisms of its action remain unclear. The 2.8-A-resolution crystal structure of the human LSD1 reveals that LSD1 defines a new subfamily of FAD-dependent oxidases. The active center of LSD1 is characterized by a remarkable 1,245-A3 substrate-binding cavity with a highly negative electrostatic potential. Although the protein core of LSD1 resembles other flavoenzymes, its enzymatic activity and functions require two additional structural modules: an N-terminal SWIRM domain important for protein stability and a large insertion in the catalytic domain indispensable both for the demethylase activity and the interaction with CoREST. These results provide a framework for further probing the catalytic mechanism and the functional roles of LSD1.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Histone demethylation mediated by the nuclear amine oxidase homolog LSD1.

          Posttranslational modifications of histone N-terminal tails impact chromatin structure and gene transcription. While the extent of histone acetylation is determined by both acetyltransferases and deacetylases, it has been unclear whether histone methylation is also regulated by enzymes with opposing activities. Here, we provide evidence that LSD1 (KIAA0601), a nuclear homolog of amine oxidases, functions as a histone demethylase and transcriptional corepressor. LSD1 specifically demethylates histone H3 lysine 4, which is linked to active transcription. Lysine demethylation occurs via an oxidation reaction that generates formaldehyde. Importantly, RNAi inhibition of LSD1 causes an increase in H3 lysine 4 methylation and concomitant derepression of target genes, suggesting that LSD1 represses transcription via histone demethylation. The results thus identify a histone demethylase conserved from S. pombe to human and reveal dynamic regulation of histone methylation by both histone methylases and demethylases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of LSD1 histone demethylase activity by its associated factors.

            LSD1 is a recently identified human lysine (K)-specific histone demethylase. LSD1 is associated with HDAC1/2; CoREST, a SANT domain-containing corepressor; and BHC80, a PHD domain-containing protein, among others. We show that CoREST endows LSD1 with the ability to demethylate nucleosomal substrates and that it protects LSD1 from proteasomal degradation in vivo. We find hyperacetylated nucleosomes less susceptible to CoREST/LSD1-mediated demethylation, suggesting that hypoacetylated nucleosomes may be the preferred physiological substrates. This raises the possibility that histone deacetylases and LSD1 may collaborate to generate a repressive chromatin environment. Consistent with this model, TSA treatment results in derepression of LSD1 target genes. While CoREST positively regulates LSD1 function, BHC80 inhibits CoREST/LSD1-mediated demethylation in vitro and may therefore confer negative regulation. Taken together, these findings suggest that LSD1-mediated histone demethylation is regulated dynamically in vivo. This is expected to have profound effects on gene expression under both physiological and pathological conditions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Histone demethylation by a family of JmjC domain-containing proteins.

              Covalent modification of histones has an important role in regulating chromatin dynamics and transcription. Whereas most covalent histone modifications are reversible, until recently it was unknown whether methyl groups could be actively removed from histones. Using a biochemical assay coupled with chromatography, we have purified a novel JmjC domain-containing protein, JHDM1 (JmjC domain-containing histone demethylase 1), that specifically demethylates histone H3 at lysine 36 (H3-K36). In the presence of Fe(ii) and alpha-ketoglutarate, JHDM1 demethylates H3-methyl-K36 and generates formaldehyde and succinate. Overexpression of JHDM1 reduced the level of dimethyl-H3-K36 (H3K36me2) in vivo. The demethylase activity of the JmjC domain-containing proteins is conserved, as a JHDM1 homologue in Saccharomyces cerevisiae also has H3-K36 demethylase activity. Thus, we identify the JmjC domain as a novel demethylase signature motif and uncover a protein demethylation mechanism that is conserved from yeast to human.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                September 19 2006
                September 19 2006
                September 06 2006
                September 19 2006
                : 103
                : 38
                : 13956-13961
                Article
                10.1073/pnas.0606381103
                1599895
                16956976
                fabae5fd-bf67-46ad-bd84-05d2edfd9772
                © 2006
                History

                Comments

                Comment on this article