18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reflections on the Use of an Invertebrate Chordate Model System for Studies of Gut Microbial Immune Interactions

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The functional ecology of the gastrointestinal tract impacts host physiology, and its dysregulation is at the center of various diseases. The immune system, and specifically innate immunity, plays a fundamental role in modulating the interface of host and microbes in the gut. While humans remain a primary focus of research in this field, the use of diverse model systems help inform us of the fundamental principles legislating homeostasis in the gut. Invertebrates, which lack vertebrate-style adaptive immunity, can help define conserved features of innate immunity that shape the gut ecosystem. In this context, we previously proposed the use of a marine invertebrate, the protochordate Ciona robusta, as a novel tractable model system for studies of host-microbiome interactions. Significant progress, reviewed herein, has been made to fulfill that vision. We examine and review discoveries from Ciona that include roles for a secreted immune effector interacting with elements of the microbiota, as well as chitin-rich mucus lining the gut epithelium, the gut-associated microbiome of adults, and the establishment of a large catalog of cultured isolates with which juveniles can be colonized. Also discussed is the establishment of methods to rear the animals germ-free, an essential technology for dissecting the symbiotic interactions at play. As the foundation is now set to extend these studies into the future, broadening our comprehension of how host effectors shape the ecology of these microbial communities in ways that establish and maintain homeostasis will require full utilization of “multi-omics” approaches to merge computational sciences, modeling, and experimental biology in hypothesis-driven investigations.

          Related collections

          Most cited references167

          • Record: found
          • Abstract: found
          • Article: not found

          Pathogen recognition and innate immunity.

          Microorganisms that invade a vertebrate host are initially recognized by the innate immune system through germline-encoded pattern-recognition receptors (PRRs). Several classes of PRRs, including Toll-like receptors and cytoplasmic receptors, recognize distinct microbial components and directly activate immune cells. Exposure of immune cells to the ligands of these receptors activates intracellular signaling cascades that rapidly induce the expression of a variety of overlapping and unique genes involved in the inflammatory and immune responses. New insights into innate immunity are changing the way we think about pathogenesis and the treatment of infectious diseases, allergy, and autoimmunity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors.

            The discovery of Toll-like receptors (TLRs) as components that recognize conserved structures in pathogens has greatly advanced understanding of how the body senses pathogen invasion, triggers innate immune responses and primes antigen-specific adaptive immunity. Although TLRs are critical for host defense, it has become apparent that loss of negative regulation of TLR signaling, as well as recognition of self molecules by TLRs, are strongly associated with the pathogenesis of inflammatory and autoimmune diseases. Furthermore, it is now clear that the interaction between TLRs and recently identified cytosolic innate immune sensors is crucial for mounting effective immune responses. Here we describe the recent advances that have been made by research into the role of TLR biology in host defense and disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The gut microbiota shapes intestinal immune responses during health and disease.

              Immunological dysregulation is the cause of many non-infectious human diseases such as autoimmunity, allergy and cancer. The gastrointestinal tract is the primary site of interaction between the host immune system and microorganisms, both symbiotic and pathogenic. In this Review we discuss findings indicating that developmental aspects of the adaptive immune system are influenced by bacterial colonization of the gut. We also highlight the molecular pathways that mediate host-symbiont interactions that regulate proper immune function. Finally, we present recent evidence to support that disturbances in the bacterial microbiota result in dysregulation of adaptive immune cells, and this may underlie disorders such as inflammatory bowel disease. This raises the possibility that the mammalian immune system, which seems to be designed to control microorganisms, is in fact controlled by microorganisms.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                25 February 2021
                2021
                : 12
                : 642687
                Affiliations
                [1] 1 Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn , Naples, Italy
                [2] 2 Morsani College of Medicine, Department of Pediatrics, University of South Florida , Tampa, FL, United States
                [3] 3 Division of Molecular Genetics, Children’s Research Institute , St. Petersburg, FL, United States
                [4] 4 Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida , Tampa, FL, United States
                Author notes

                Edited by: Antonio Figueras, Consejo Superior de Investigaciones Científicas (CSIC), Spain

                Reviewed by: Loriano Ballarin, University of Padua, Italy; M. Carla Piazzon, Torre de la Sal Aquaculture Institute (IATS), Spain

                †Present address: Paolo Sordino, Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Messina, Italy

                This article was submitted to Comparative Immunology, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2021.642687
                7947342
                33717199
                fa917a2e-e79b-4a5a-abb3-f989506588e3
                Copyright © 2021 Liberti, Natarajan, Atkinson, Sordino and Dishaw

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 16 December 2020
                : 20 January 2021
                Page count
                Figures: 7, Tables: 0, Equations: 0, References: 168, Pages: 19, Words: 9122
                Categories
                Immunology
                Review

                Immunology
                ciona robusta,ciona intestinalis type a,invertebrate model,mucosal immunity,innate immunity,gut-microbial interactions,gut microbiota,multi-omics approaches

                Comments

                Comment on this article