12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of the efficacy of OLIF combined posterior internal fixation for single-segment lumbar tuberculosis: a single-center retrospective cohort study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          To evaluate the clinical efficacy of oblique lateral interbody fusion (OLIF) combined posterior fixation for single-segment lumbar tuberculosis (TB).

          Methods

          The medical records of spinal TB patients who were admitted to our department from January 2016 to December 2018 were retrospectively reviewed, and those meeting the inclusion criteria were finally included for analysis. The operative time, operative blood loss, hospital stay, visual analogue scale (VAS) score, Oswestry disability index (ODI), Cobb angle of surgical segment, bone graft fusion rate, erythrocytic sedimentation rate (ESR), C-reactive protein (CRP), neurological function (ASIA grade) and complications of the included patients were all recorded and analyzed.

          Results

          Thirty-nine patients with lumbar TB were finally included. The mean operative time, operative blood loss, and hospital stay were 135.8 ± 19.2 min, 239.4 ± 84.7 ml, and 9.5 ± 2.7 days, respectively. The mean follow-up time was 26.3 ± 7.5 months. During the follow-up, both VAS score and ODI were significantly improved at 1 month, 3 months, 6 months, 1 year postoperative, and the last follow-up, compared with preoperative ( P < 0.001). Cobb angle was significantly corrected at 1 month postoperatively ( P < 0.001), however, from 3 months postoperative to the last follow-up, Cobb angle was getting lost ( P < 0.01). Bone graft fusion rate at 3 months, 6 months, 1 year postoperative, and last follow-up were 66.67%, 87.18%, 94.88%, and 100%, respectively. Compared with preoperative, ESR and CRP were both showed significant decrease at 1 and 6 months postoperative, and the last follow-up ( P < 0.001). At the last follow-up, all patients had improvement in ASIA grade compared with preoperative ( P < 0.001). Six patients were found with postoperative complications, and all were cured after active treatment.

          Conclusions

          OLIF combined posterior internal fixation is safe and effective in the treatment of single-segment lumbar TB, with satisfactory pain relief, improvement of lumbar and neurological function, and deformity correction.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies

          Introduction Many questions in medical research are investigated in observational studies [1]. Much of the research into the cause of diseases relies on cohort, case-control, or cross-sectional studies. Observational studies also have a role in research into the benefits and harms of medical interventions [2]. Randomised trials cannot answer all important questions about a given intervention. For example, observational studies are more suitable to detect rare or late adverse effects of treatments, and are more likely to provide an indication of what is achieved in daily medical practice [3]. Research should be reported transparently so that readers can follow what was planned, what was done, what was found, and what conclusions were drawn. The credibility of research depends on a critical assessment by others of the strengths and weaknesses in study design, conduct, and analysis. Transparent reporting is also needed to judge whether and how results can be included in systematic reviews [4,5]. However, in published observational research important information is often missing or unclear. An analysis of epidemiological studies published in general medical and specialist journals found that the rationale behind the choice of potential confounding variables was often not reported [6]. Only few reports of case-control studies in psychiatry explained the methods used to identify cases and controls [7]. In a survey of longitudinal studies in stroke research, 17 of 49 articles (35%) did not specify the eligibility criteria [8]. Others have argued that without sufficient clarity of reporting, the benefits of research might be achieved more slowly [9], and that there is a need for guidance in reporting observational studies [10,11]. Recommendations on the reporting of research can improve reporting quality. The Consolidated Standards of Reporting Trials (CONSORT) Statement was developed in 1996 and revised 5 years later [12]. Many medical journals supported this initiative [13], which has helped to improve the quality of reports of randomised trials [14,15]. Similar initiatives have followed for other research areas—e.g., for the reporting of meta-analyses of randomised trials [16] or diagnostic studies [17]. We established a network of methodologists, researchers, and journal editors to develop recommendations for the reporting of observational research: the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement. Aims and Use of the STROBE Statement The STROBE Statement is a checklist of items that should be addressed in articles reporting on the 3 main study designs of analytical epidemiology: cohort, case-control, and cross-sectional studies. The intention is solely to provide guidance on how to report observational research well: these recommendations are not prescriptions for designing or conducting studies. Also, while clarity of reporting is a prerequisite to evaluation, the checklist is not an instrument to evaluate the quality of observational research. Here we present the STROBE Statement and explain how it was developed. In a detailed companion paper, the Explanation and Elaboration article [18–20], we justify the inclusion of the different checklist items and give methodological background and published examples of what we consider transparent reporting. We strongly recommend using the STROBE checklist in conjunction with the explanatory article, which is available freely on the Web sites of PLoS Medicine (http://www.plosmedicine.org/), Annals of Internal Medicine (http://www.annals.org/), and Epidemiology (http://www.epidem.com/). Development of the STROBE Statement We established the STROBE Initiative in 2004, obtained funding for a workshop and set up a Web site (http://www.strobe-statement.org/). We searched textbooks, bibliographic databases, reference lists, and personal files for relevant material, including previous recommendations, empirical studies of reporting and articles describing relevant methodological research. Because observational research makes use of many different study designs, we felt that the scope of STROBE had to be clearly defined early on. We decided to focus on the 3 study designs that are used most widely in analytical observational research: cohort, case-control, and cross-sectional studies. We organised a 2-day workshop in Bristol, UK, in September 2004. 23 individuals attended this meeting, including editorial staff from Annals of Internal Medicine, BMJ, Bulletin of the World Health Organization, International Journal of Epidemiology, JAMA, Preventive Medicine, and The Lancet, as well as epidemiologists, methodologists, statisticians, and practitioners from Europe and North America. Written contributions were sought from 10 other individuals who declared an interest in contributing to STROBE, but could not attend. Three working groups identified items deemed to be important to include in checklists for each type of study. A provisional list of items prepared in advance (available from our Web site) was used to facilitate discussions. The 3 draft checklists were then discussed by all participants and, where possible, items were revised to make them applicable to all three study designs. In a final plenary session, the group decided on the strategy for finalizing and disseminating the STROBE Statement. After the workshop we drafted a combined checklist including all three designs and made it available on our Web site. We invited participants and additional scientists and editors to comment on this draft checklist. We subsequently published 3 revisions on the Web site, and 2 summaries of comments received and changes made. During this process the coordinating group (i.e., the authors of the present paper) met on eight occasions for 1 or 2 days and held several telephone conferences to revise the checklist and to prepare the present paper and the Explanation and Elaboration paper [18–20]. The coordinating group invited 3 additional co-authors with methodological and editorial expertise to help write the Explanation and Elaboration paper, and sought feedback from more than 30 people, who are listed at the end of this paper. We allowed several weeks for comments on subsequent drafts of the paper and reminded collaborators about deadlines by e-mail. STROBE Components The STROBE Statement is a checklist of 22 items that we consider essential for good reporting of observational studies (Table 1). These items relate to the article's title and abstract (item 1), the introduction (items 2 and 3), methods (items 4–12), results (items 13–17) and discussion sections (items 18–21), and other information (item 22 on funding). 18 items are common to all three designs, while four (items 6, 12, 14, and 15) are design-specific, with different versions for all or part of the item. For some items (indicated by asterisks), information should be given separately for cases and controls in case-control studies, or exposed and unexposed groups in cohort and cross-sectional studies. Although presented here as a single checklist, separate checklists are available for each of the 3 study designs on the STROBE Web site. Table 1 The STROBE Statement—Checklist of Items That Should Be Addressed in Reports of Observational Studies Implications and Limitations The STROBE Statement was developed to assist authors when writing up analytical observational studies, to support editors and reviewers when considering such articles for publication, and to help readers when critically appraising published articles. We developed the checklist through an open process, taking into account the experience gained with previous initiatives, in particular CONSORT. We reviewed the relevant empirical evidence as well as methodological work, and subjected consecutive drafts to an extensive iterative process of consultation. The checklist presented here is thus based on input from a large number of individuals with diverse backgrounds and perspectives. The comprehensive explanatory article [18–20], which is intended for use alongside the checklist, also benefited greatly from this consultation process. Observational studies serve a wide range of purposes, on a continuum from the discovery of new findings to the confirmation or refutation of previous findings [18–20]. Some studies are essentially exploratory and raise interesting hypotheses. Others pursue clearly defined hypotheses in available data. In yet another type of studies, the collection of new data is planned carefully on the basis of an existing hypothesis. We believe the present checklist can be useful for all these studies, since the readers always need to know what was planned (and what was not), what was done, what was found, and what the results mean. We acknowledge that STROBE is currently limited to three main observational study designs. We would welcome extensions that adapt the checklist to other designs—e.g., case-crossover studies or ecological studies—and also to specific topic areas. Four extensions are now available for the CONSORT statement [21–24]. A first extension to STROBE is underway for gene-disease association studies: the STROBE Extension to Genetic Association studies (STREGA) initiative [25]. We ask those who aim to develop extensions of the STROBE Statement to contact the coordinating group first to avoid duplication of effort. The STROBE Statement should not be interpreted as an attempt to prescribe the reporting of observational research in a rigid format. The checklist items should be addressed in sufficient detail and with clarity somewhere in an article, but the order and format for presenting information depends on author preferences, journal style, and the traditions of the research field. For instance, we discuss the reporting of results under a number of separate items, while recognizing that authors might address several items within a single section of text or in a table. Also, item 22, on the source of funding and the role of funders, could be addressed in an appendix or in the methods section of the article. We do not aim at standardising reporting. Authors of randomised clinical trials were asked by an editor of a specialist medical journal to “CONSORT” their manuscripts on submission [26]. We believe that manuscripts should not be “STROBEd”, in the sense of regulating style or terminology. We encourage authors to use narrative elements, including the description of illustrative cases, to complement the essential information about their study, and to make their articles an interesting read [27]. We emphasise that the STROBE Statement was not developed as a tool for assessing the quality of published observational research. Such instruments have been developed by other groups and were the subject of a recent systematic review [28]. In the Explanation and Elaboration paper, we used several examples of good reporting from studies whose results were not confirmed in further research – the important feature was the good reporting, not whether the research was of good quality. However, if STROBE is adopted by authors and journals, issues such as confounding, bias, and generalisability could become more transparent, which might help temper the over-enthusiastic reporting of new findings in the scientific community and popular media [29], and improve the methodology of studies in the long term. Better reporting may also help to have more informed decisions about when new studies are needed, and what they should address. We did not undertake a comprehensive systematic review for each of the checklist items and sub-items, or do our own research to fill gaps in the evidence base. Further, although no one was excluded from the process, the composition of the group of contributors was influenced by existing networks and was not representative in terms of geography (it was dominated by contributors from Europe and North America) and probably was not representative in terms of research interests and disciplines. We stress that STROBE and other recommendations on the reporting of research should be seen as evolving documents that require continual assessment, refinement, and, if necessary, change. We welcome suggestions for the further dissemination of STROBE—e.g., by re-publication of the present article in specialist journals and in journals published in other languages. Groups or individuals who intend to translate the checklist to other languages should consult the coordinating group beforehand. We will revise the checklist in the future, taking into account comments, criticism, new evidence, and experience from its use. We invite readers to submit their comments via the STROBE Web site (http://www.strobe-statement.org/).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Anterior fresh frozen structural allografts in the thoracic and lumbar spine. Do they work if combined with posterior fusion and instrumentation in adult patients with kyphosis or anterior column defects?

            This was a prospective study of 24 adult patients with kyphosis or anterior column spinal defects treated with anterior fresh frozen allograft for anterior column defects and posterior instrumentation and autogenous grafting. The objectives of the study were to assess the effectiveness of the anterior allograft in maintaining sagittal correction and to assess anterior incorporation. Twenty-four patients were followed for a minimum of 2 years (range, 2 + 0-5 + 4 years). Upright radiographs were analyzed before surgery, immediately after surgery, and at the final follow-up examination to assess success of anterior fusion and maintenance of correction. A strict four-point grading system was used. Two independent observers analyzed the radiographic results. Only two patients showed some collapse of their anterior allograft. The other 22 patients maintained correction, attaining a Grade I or Grade II fusion. Semiconstrained instrumentation ws used posteriorly in the two patients who had graft collapse. Anterior structural allograft worked effectively to maintain correction of kyphosis if combined with posterior instrumentation and autogenous grafting. Rigid forms of posterior instrumentation were preferred.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Minimally invasive anterior, lateral, and oblique lumbar interbody fusion: a literature review

              Lumbar interbody fusion involves insertion of a structural graft into an intervertebral disc space to promote bony arthrodesis. It is a well-established surgical strategy for multiple spinal disorders ranging from degenerative conditions to trauma, neoplastic diseases, and deformities requiring correction. Since the inception of lumbar interbody fusion, the most established techniques have been two posterior approaches, the posterior lumbar interbody fusion (PLIF) and the transforaminal lumbar interbody fusion (TLIF). Within the past 15 years, multiple anterolateral approaches to the spine have become widely adopted. These approaches can be performed minimally invasively and spare disruption of the paraspinal muscles and posterior spinal column while enabling wide exposure of the disc space for insertion of interbody grafts much larger than PLIF and TLIF instrumentation. This review highlights three minimally invasive anterolateral approaches: the anterior lumbar interbody fusion (ALIF), the transpsoas lateral lumbar interbody fusion (LLIF), and prepsoas or anterior to the psoas oblique lumbar interbody fusion (OLIF). Relevant topics for discussion and comparison include patient selection, surgical techniques, outcomes, and complications for the three surgical approaches.
                Bookmark

                Author and article information

                Contributors
                duxing92@yeah.net
                ouyunsheng2001@163.com
                723162925@qq.com
                15227275613@163.com
                983579133@qq.com
                cyzhuyong@sohu.com
                Journal
                BMC Surg
                BMC Surg
                BMC Surgery
                BioMed Central (London )
                1471-2482
                13 February 2022
                13 February 2022
                2022
                : 22
                : 54
                Affiliations
                GRID grid.452206.7, ISNI 0000 0004 1758 417X, Department of Orthopedics, , The First Affiliated Hospital of Chongqing Medical University, ; No.1 YouYi Road, Yuan Jia Gang, Yu Zhong District, Chongqing, 400016 China
                Article
                1492
                10.1186/s12893-022-01492-4
                8842924
                35152902
                f7275b97-d4a5-4cf5-aece-c7b06bea5f8d
                © The Author(s) 2022

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 10 August 2021
                : 20 January 2022
                Categories
                Research
                Custom metadata
                © The Author(s) 2022

                Surgery
                lumbar tuberculosis,oblique lumbar interbody fusion,debridement,internal fixation
                Surgery
                lumbar tuberculosis, oblique lumbar interbody fusion, debridement, internal fixation

                Comments

                Comment on this article