3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Screening the Citrus Greek National Germplasm Collection for fruit quality and metabolic footprint

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap

          The Principal Component Analysis (PCA) is a widely used method of reducing the dimensionality of high-dimensional data, often followed by visualizing two of the components on the scatterplot. Although widely used, the method is lacking an easy-to-use web interface that scientists with little programming skills could use to make plots of their own data. The same applies to creating heatmaps: it is possible to add conditional formatting for Excel cells to show colored heatmaps, but for more advanced features such as clustering and experimental annotations, more sophisticated analysis tools have to be used. We present a web tool called ClustVis that aims to have an intuitive user interface. Users can upload data from a simple delimited text file that can be created in a spreadsheet program. It is possible to modify data processing methods and the final appearance of the PCA and heatmap plots by using drop-down menus, text boxes, sliders etc. Appropriate defaults are given to reduce the time needed by the user to specify input parameters. As an output, users can download PCA plot and heatmap in one of the preferred file formats. This web server is freely available at http://biit.cs.ut.ee/clustvis/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Flavonoid composition of fruit tissues of citrus species.

            An HPLC analysis was performed on the concentrations of flavonoids in 42 species and cultivars of the Citrus genus and those of two Fortunella and one Poncirus species according to the classification system established by Tanaka. The composition of 8 flavanones and 9 flavone/ols for these species was determined in the albedo, flavedo, segment epidermis and juice vesicle tissues, and those in the fruit and peel tissues were calculated from the composition data of the tissues. A principal component analysis showed that such neohesperidosyl flavonoids as neoeriocitrin, naringin, neohesperidin, and rhoifolin had large factor loading values in the first principal component for each tissue. The flavonoid composition of citrus fruits was approximately the same within each section of Tanaka's system, except for the species in the Aurantium section and those with a peculiar flavonoid composition such as Bergamot (C. bergamia), Marsh grapefruit (C. paradisi), Sour orange (C. aurantium), and Shunkokan (C. shunkokan). The Aurantium section included both naringin-rich and hesperidin-rich species.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A versatile targeted metabolomics method for the rapid quantification of multiple classes of phenolics in fruits and beverages.

              Compelling evidence of the health benefits of phenolic compounds and their impact on food quality have stimulated the development of analytical methods for the identification and quantification of these compounds in different matrices in recent years. A targeted metabolomics method has been developed for the quantification of 135 phenolics, such as benzoates, phenylpropanoids, coumarins, stilbenes, dihydrochalcones, and flavonoids, in fruit and tea extracts and wine using UPLC/QqQ-MS/MS. Chromatography was optimized to achieve separation of the compounds over a period of 15 min, and MRM transitions were selected for accurate quantification. The method was validated by studying the detection and quantification limits, the linearity ranges, and the intraday and interday repeatability of the analysis. The validated method was applied to the analysis of apples, berries, green tea, and red wine, providing a valuable tool for food quality evaluation and breeding studies.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Food Chemistry
                Food Chemistry
                Elsevier BV
                03088146
                March 2024
                March 2024
                : 435
                : 137573
                Article
                10.1016/j.foodchem.2023.137573
                37769559
                f417b2f0-7d6f-4628-95d9-527bb4e5a39d
                © 2024

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article