7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Long intergenic non-protein coding RNA 1094 (LINC01094) promotes the progression of breast cancer (BC) by regulating the microRNA-340-5p (miR-340-5p)/E2F transcription factor 3 (E2F3) axis

      research-article
      a , b , c
      Bioengineered
      Taylor & Francis
      LINC01094, miR-340-5p, E2f3, BC, proliferation, apoptosis

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          The present study was targeted at investigating the effects of long intergenic non-protein coding RNA 1094 on breast cancer (BC) cell proliferation, apoptosis, and cell cycle and its related mechanism. In this study, Western blot and quantitative real-time polymerase chain reaction (qRT-PCR) were conducted to detect the expressions of LINC01094, microRNA (miRNA, miR)-340-5p, and E2F transcription factor 3 (E2F3) in BC tissues and cells. With transfection, LINC01094 and miR-340-5p expressions were selectively up-regulated or down-regulated in BC cell lines, and then cell proliferation, cell cycle, and apoptosis were examined by cell counting kit-8 (CCK-8), 5-bromo-2ʹ-deoxyuridine (BrdU), and flow cytometry assays. Bioinformatics was utilized to predict the targeted relationships between miR-340-5p and LINC01094, as well as miR-340-5p and E2F3 mRNA 3ʹ-untranslated region (3ʹUTR), and RNA immunoprecipitation (RIP) assay and dual-luciferase reporter gene assay were employed to validate them. It was revealed that, LINC01094 expression was enhanced in BC cells and tissues, and LINC01094 overexpression promoted BC cell proliferation, accelerated cell cycle progression, and inhibited apoptosis while knocking down LINC01094 worked oppositely. LINC01094 directly targeted miR-340-5p and negatively regulated its expression in BC cells. Besides, E2F3 was substantiated to be the target gene of miR-340-5p, and E2F3 expression could be indirectly and positively modulated by LINC01094. All in all, LINC01094 promotes BC cell proliferation and cell cycle progression and inhibits apoptosis via modulating miR-340-5p/E2F3 molecular axis.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Long Noncoding RNA and Cancer: A New Paradigm.

          In addition to mutations or aberrant expression in the protein-coding genes, mutations and misregulation of noncoding RNAs, in particular long noncoding RNAs (lncRNA), appear to play major roles in cancer. Genome-wide association studies of tumor samples have identified a large number of lncRNAs associated with various types of cancer. Alterations in lncRNA expression and their mutations promote tumorigenesis and metastasis. LncRNAs may exhibit tumor-suppressive and -promoting (oncogenic) functions. Because of their genome-wide expression patterns in a variety of tissues and their tissue-specific expression characteristics, lncRNAs hold strong promise as novel biomarkers and therapeutic targets for cancer. In this article, we have reviewed the emerging functions and association of lncRNAs in different types of cancer and discussed their potential implications in cancer diagnosis and therapy. Cancer Res; 77(15); 3965-81. ©2017 AACR.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MicroRNAs in cancer: biomarkers, functions and therapy.

            The emergence of microRNAs has been one of the defining developments in cancer biology over the past decade, and the explosion of knowledge in this area has brought forward new diagnostic and therapeutic opportunities. The importance of microRNAs in cancer has been underlined by the identification of alterations in microRNA target binding sites and the microRNA processing machinery in tumor cells. Clinical trials utilizing microRNA profiling for patient prognosis and clinical response are now underway, and the first microRNA mimic entered the clinic for cancer therapy in 2013. In this article we review the potential applications of microRNAs for the clinical assessment of patient outcome in cancer, as well as in cancer monitoring and therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              microRNA functions.

              microRNAs (miRNAs) are small noncoding RNAs that play important roles in posttranscriptional gene regulation. In animal cells, miRNAs regulate their targets by translational inhibition and mRNA destabilization. Here, we review recent work in animal models that provide insight into the diverse roles of miRNAs in vivo.
                Bookmark

                Author and article information

                Journal
                Bioengineered
                Bioengineered
                Bioengineered
                Taylor & Francis
                2165-5979
                2165-5987
                28 October 2021
                2021
                28 October 2021
                : 12
                : 1
                : 9046-9057
                Affiliations
                [a ]Department of Oncology, The Third People’s Hospital of Linyi; , Linyi, Shandong, China
                [b ]Department of Personnel, The Third People’s Hospital of Linyi; , Linyi, Shandong, China
                [c ]Department of Both Glandular and Hemangioma Families, Shandong Provincial Third Hospital; , Jinan, Shandong, China
                Author notes
                CONTACT Yilei Wu hcb846863@ 123456163.com Department of Both Glandular and Hemangioma Families, Shandong Provincial Third Hospital; , No. 12 Wuyingshan Middle Road, Shizhong District, Jinan 250031, Shandong, China
                Author information
                https://orcid.org/0000-0003-2847-4040
                Article
                1993715
                10.1080/21655979.2021.1993715
                8806954
                34657558
                f39753dd-24d3-472a-8243-a0092f19b3a6
                © 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Figures: 6, References: 46, Pages: 12
                Categories
                Research Article
                Research Paper

                Biomedical engineering
                linc01094,mir-340-5p,e2f3,bc,proliferation,apoptosis
                Biomedical engineering
                linc01094, mir-340-5p, e2f3, bc, proliferation, apoptosis

                Comments

                Comment on this article