33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Subcellular Organization of the cAMP Signaling Pathway

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The field of cAMP signaling is witnessing exciting developments with the recognition that cAMP is compartmentalized and that spatial regulation of cAMP is critical for faithful signal coding. This realization has changed our understanding of cAMP signaling from a model in which cAMP connects a receptor at the plasma membrane to an intracellular effector in a linear pathway to a model in which cAMP signals propagate within a complex network of alternative branches and the specific functional outcome strictly depends on local regulation of cAMP levels and on selective activation of a limited number of branches within the network. In this review, we cover some of the early studies and summarize more recent evidence supporting the model of compartmentalized cAMP signaling, and we discuss how this knowledge is starting to provide original mechanistic insight into cell physiology and a novel framework for the identification of disease mechanisms that potentially opens new avenues for therapeutic interventions.

          Significance Statement

          cAMP mediates the intracellular response to multiple hormones and neurotransmitters. Signal fidelity and accurate coordination of a plethora of different cellular functions is achieved via organization of multiprotein signalosomes and cAMP compartmentalization in subcellular nanodomains. Defining the organization and regulation of subcellular cAMP nanocompartments is necessary if we want to understand the complex functional ramifications of pharmacological treatments that target G protein–coupled receptors and for generating a blueprint that can be used to develop precision medicine interventions.

          Abstract

          Related collections

          Most cited references461

          • Record: found
          • Abstract: found
          • Article: not found

          Mitochondrial dynamics and apoptosis.

          In healthy cells, mitochondria continually divide and fuse to form a dynamic interconnecting network. The molecular machinery that mediates this organelle fission and fusion is necessary to maintain mitochondrial integrity, perhaps by facilitating DNA or protein quality control. This network disintegrates during apoptosis at the time of cytochrome c release and prior to caspase activation, yielding more numerous and smaller mitochondria. Recent work shows that proteins involved in mitochondrial fission and fusion also actively participate in apoptosis induction. This review will cover the recent advances and presents competing models on how the mitochondrial fission and fusion machinery may intersect apoptosis pathways.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mammalian G proteins and their cell type specific functions.

            Heterotrimeric G proteins are key players in transmembrane signaling by coupling a huge variety of receptors to channel proteins, enzymes, and other effector molecules. Multiple subforms of G proteins together with receptors, effectors, and various regulatory proteins represent the components of a highly versatile signal transduction system. G protein-mediated signaling is employed by virtually all cells in the mammalian organism and is centrally involved in diverse physiological functions such as perception of sensory information, modulation of synaptic transmission, hormone release and actions, regulation of cell contraction and migration, or cell growth and differentiation. In this review, some of the functions of heterotrimeric G proteins in defined cells and tissues are described.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE Study Research Group.

              Milrinone, a phosphodiesterase inhibitor, enhances cardiac contractility by increasing intracellular levels of cyclic AMP, but the long-term effect of this type of positive inotropic agent on the survival of patients with chronic heart failure has not been determined. We randomly assigned 1,088 patients with severe chronic heart failure (New York Heart Association class III or IV) and advanced left ventricular dysfunction to double-blind treatment with (40 mg of oral milrinone daily (561 patients) or placebo (527 patients). In addition, all patients received conventional therapy with digoxin, diuretics, and a converting-enzyme inhibitor throughout the trial. The median period of follow-up was 6.1 months (range, 1 day to 20 months). As compared with placebo, milrinone therapy was associated with a 28 percent increase in mortality from all causes (95 percent confidence interval, 1 to 61 percent; P = 0.038) and a 34 percent increase in cardiovascular mortality (95 percent confidence interval, 6 to 69 percent; P = 0.016). The adverse effect of milrinone was greatest in patients with the most severe symptoms (New York Heart Association class IV), who had a 53 percent increase in mortality (95 percent confidence interval, 13 to 107 percent; P = 0.006). Milrinone did not have a beneficial effect on the survival of any subgroup. Patients treated with milrinone had more hospitalizations (44 vs. 39 percent, P = 0.041), were withdrawn from double-blind therapy more frequently (12.7 vs. 8.7 percent, P = 0.041), and had serious adverse cardiovascular reactions, including hypotension (P = 0.006) and syncope (P = 0.002), more often than the patients given placebo. Our findings indicate that despite its beneficial hemodynamic actions, long-term therapy with oral milrinone increases the morbidity and mortality of patients with severe chronic heart failure. The mechanism by which the drug exerts its deleterious effects is unknown.
                Bookmark

                Author and article information

                Contributors
                Role: ASSOCIATE EDITOR
                Journal
                Pharmacol Rev
                Pharmacol Rev
                pharmrev
                Pharmacol Rev
                PharmRev
                Pharmacological Reviews
                The American Society for Pharmacology and Experimental Therapeutics (Bethesda, MD )
                0031-6997
                1521-0081
                January 2021
                January 2021
                January 2021
                : 73
                : 1
                : 278-309
                Affiliations
                Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
                Author notes
                Address correspondence to: Manuela Zaccolo, Department of Physiology, Anatomy and Genetics, Sherrington Building, Parks Rd, Oxford OX1 3PT, United Kingdom. E-mail: manuela.zaccolo@ 123456dpag.ox.ac.uk
                Author information
                https://orcid.org/0000-0002-0934-3662
                Article
                PHARMREV_AR2020000086
                10.1124/pharmrev.120.000086
                7770493
                33334857
                f2b38da0-f8d3-4fac-97d4-e4fc345494ca
                Copyright © 2020 by The Author(s)

                This is an open access article distributed under the CC BY Attribution 4.0 International license.

                History
                Page count
                Pages: 32
                Categories
                Review Articles

                Comments

                Comment on this article