73
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists

      1
      Water Resources Research
      American Geophysical Union (AGU)

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references160

          • Record: found
          • Abstract: not found
          • Article: not found

          Multilayer feedforward networks are universal approximators

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning

            Remarkable progress has been made in image recognition, primarily due to the availability of large-scale annotated datasets and deep convolutional neural networks (CNNs). CNNs enable learning data-driven, highly representative, hierarchical image features from sufficient training data. However, obtaining datasets as comprehensively annotated as ImageNet in the medical imaging domain remains a challenge. There are currently three major techniques that successfully employ CNNs to medical image classification: training the CNN from scratch, using off-the-shelf pre-trained CNN features, and conducting unsupervised CNN pre-training with supervised fine-tuning. Another effective method is transfer learning, i.e., fine-tuning CNN models pre-trained from natural image dataset to medical image tasks. In this paper, we exploit three important, but previously understudied factors of employing deep convolutional neural networks to computer-aided detection problems. We first explore and evaluate different CNN architectures. The studied models contain 5 thousand to 160 million parameters, and vary in numbers of layers. We then evaluate the influence of dataset scale and spatial image context on performance. Finally, we examine when and why transfer learning from pre-trained ImageNet (via fine-tuning) can be useful. We study two specific computer-aided detection (CADe) problems, namely thoraco-abdominal lymph node (LN) detection and interstitial lung disease (ILD) classification. We achieve the state-of-the-art performance on the mediastinal LN detection, and report the first five-fold cross-validation classification results on predicting axial CT slices with ILD categories. Our extensive empirical evaluation, CNN model analysis and valuable insights can be extended to the design of high performance CAD systems for other medical imaging tasks.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Extracting and composing robust features with denoising autoencoders

                Bookmark

                Author and article information

                Journal
                Water Resources Research
                Water Resour. Res.
                American Geophysical Union (AGU)
                0043-1397
                1944-7973
                November 23 2018
                November 2018
                November 05 2018
                November 2018
                : 54
                : 11
                : 8558-8593
                Affiliations
                [1 ]Civil and Environmental EngineeringPennsylvania State University University Park PA USA
                Article
                10.1029/2018WR022643
                ef4b2177-7e25-497f-8eaf-b719db526e93
                © 2018

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article